HPS Overview

Tim Nelson - **SLAC** HPS Collaboration Meeting November 18, 2020

HPS collaboration news

Completing 2016 analyses

Launching 2019 analyses

Preparing for 2021 operations

HPS beyond 2021

Lauren Tompkins (Stanford) has formally applied for membership, up for approval at this meeting: (Don't forget to vote!)

- SIMPs (Stany Sevova and Jess Fry)
- FEB diagnostics and redesign (Marcelo Vicente)
- A new Ph.D. to celebrate:
- Dr. Matthew Solt *> UVA* postdoc (LDMX)

With the availability of 2019 data, and more coming in 2021, we now have more physics (and thesis topics) than students!

This is a great time to engage new students on HPS: we have a significant dataset, operations next year to triple our data, and multiple postdocs who are now top analysis experts ready to guide new students!

HPS Organization

SLAC

Spokespeople:

Maurik Holtrop (UNH), Tim Nelson (SLAC), Stepan Stepanyan (JLab)

Executive Committee:

Marzio De Napoli (INFN Catania), Norman Graf (SLAC), Maurik Holtrop (UNH), John Jaros (SLAC - emeritus), Omar Moreno (SLAC), Tim Nelson (SLAC), Rafayel Paramuzyan (JLab), **Stepan Stepanyan (JLab - chair)**

Publications and Presentations Committee: (two seats to be elected at this meeting) Gabriel Charles (Orsay), Andrea Celentano (INFN Genova - Chair), Rouven Essig (Stony Brook), Norman Graf (SLAC), Rafayel Paremuzyan (UNH)

Don't forget to vote!

The complexion of the collaboration and the challenges it faces have changed since the collaboration was established during construction. The spokespeople and EC have developed a new organization aimed at meeting our challenges over the next ~year.

- Proposed working groups and coordinators Preparing for 2021 run:
 - DAQ, Sergey and Ryan
 - Trigger, Valery
 - Slow controls, Nathan and Omar
 - Monitoring, Matt G.
 - SVT, Tim
 - ECal/hodoscope, Rafo
 - Beamline, Stepan
 - 2019 analysis:
 - Analysis, Matt G. and Cameron
 - Calibration and recon., Norman and PF
 - MC, Tongtong
 - Software, Norman
- The EC has drafted a management plan to clarify these roles. <u>https://www.overleaf.com/read/yfpkppnmsrmz</u>

- EC oversight
 - slow controls, Rafo
 - ECal/hodo, beamline, DAQ/trigger, Marzio
 - MC and Software, Maurik
 - analysis, Tim
 - monitoring, Norman
 - calibration/recon, Omar
 - SVT, Stepan

The HPS Charter and Bylaws is increasingly outdated with respect to current best practices for diversity and inclusion.

An important first step is a code of conduct for the collaboration.

The EC is beginning to review a draft code of conduct for inclusion in our governing documents.

We will have a presentation of this from Omar on Friday with time for discussion afterwards.

There is much more to do in this area, and I would like to encourage broader participation among the collaboration in these efforts.

3

⁵7

The review of HPS by PAC 48 was a major milestone for this year.

Success rested on three pillars:

- Analysis results from 2016 data
- Progress with calibration and reconstruction for 2019 data
- A run plan for 2021 and beyond with updated reach estimates

These continue to define many of our activities.

PAC 48 SUMMARY OF JEOPARDY RECOMMENDATIONS											
Number	Contact Person	Title	Hall	Days Req'd	Days Awarded	Scientific Rating	PAC Decision	Торіс			
<u>E12-12-002</u> (GlueX-II)	M. Shepherd	An update on the GlueX II and Jefferson Lab Eta Factory experiments	D	220		А	Remain Active	1			
E12-13-008 (Pion polarizability)	R. Miskimen	Measuring the Charged Pion Polarizability in the gamma gamma -> pi+ pi- Reaction	D	25		A-	Remain Active	2			
<u>RG-A</u>	L. Elouadrhiri	CLAS12 Run Group A (RG-A)	В	200		Α	Remain Active	4			
<u>RG-B</u>	S. Niccolai	CLAS12 Run-Group B: Electroproduction on deuterium with CLAS12	В	56		A	Remain Active	3			
<u>RG-C</u>	S. Kuhn	CLAS12 Run Group C	В	200	120	А	Remain Active	4			
<u>RG-D</u>	L. El Fassi	Study of Color Transparency in Exclusive Vector Meson Electroproduction off Nuclei	В	60	30	B+	Remain Active	5			
<u>RG-E</u>	W. Brooks	Quark Propagation and Hadron Formation	В	60		A-	Remain Active	5			
<u>RG-G</u>	W. Brooks	The EMC Effect in Spin Structure Functions (CLAS Run Group G)	В	55		B+	Upgrade Rating A-	4			
<u>RG-H</u>	M. Contalbrigo	Run Group H Jeopardy Update Document. CLAS12 Experiments with a Transversely Polarized Target	В	110		А	Remain Active	4			
<u>RG-I</u>	T. Nelson	Search for Massive Photons at Jefferson Laboratory (HPS)	В	180		A	Remain Active	6			
<u>RG-K</u>	A. D'Angelo	RG-K Quark-Gluon Confinement & Strong QCD	В	100		A-	Remain Active	5			

3) Should the remaining beam time allocation and experiment grade be reconsidered? RUN GROUP ADDITION SUMMARY The collaboration proposes that future physics operations include 10 PAC weeks at ≈ 4 GeV and

The collaboration proposes that future physics operations include 10 PAC weeks at $\approx 4 \text{ GeV}$ and 6 PAC weeks at $\approx 2 \text{ GeV}$. Parkin PAC endorses this scentration and recommends intainfaining the remaining time allocation (1339 days) as well as the sequence of the

E12-11-007A/E12-10-006E Y. Tian A Precision Measurement of Inclusive g2n and d2n with SoLID

https://www.jlab.org/exp_prog/PACpage/PAC48/PAC48 Arratia Planta Bacharia at 8.8 and 11 Gev

2016 Analyses

We went all-in on the effort to complete the 2016 A' analyses with several goals in mind:

- show the PAC what HPS can do with its data
- develop and document improved tools and techniques as foundation for future generations of the A' analyses.
- create a foundation with the resonance and displaced searches – where no new sensitivity was expected – on which to build the first SIMPs result. (Jess Fry's talk)
- develop expertise in these analyses among new collaborators who will carry them forward with 2019 data.

So far, this has been a relatively successful strategy, but more work is needed to capitalize on it.

Accordingly, attention has turned increasingly to work required to enable 2019 analysis, which defines the offline Working Groups:

Calibration and Reconstruction:

- ECal calibration (Andrea's Talk)
- SVT alignment and calibration (PF's talk)
- Track reconstruction improvements (PF/Robert/Alic's talk)
- Development of new calibration techniques and samples (Norman's talk)
 Monte Carlo:
- Development of data samples required for calibration and analysis (TongTong's talk)
- Development of tools for generating much larger background samples (Omar's talk)
 Software and Computing:
- Management of software and computing resources for data processing (Norman's talk)
 Analysis
- Further development of the analysis framework for 2019 data (Cameron's talk)

Significant advances have been made in all of these areas, but there is much left to do, and these groups would all benefit from broader participation.

On top of everything else, we've got quite a lot to do to get ready to run next year under less-than-optimal circumstances.

Beamline changes and improvements (Stepan's Talk)

SVT maintenance and repair (Tim and Marcelo's Talks)

ECal and Hodoscope maintenance and repair (*Rafo's talk*)

DAQ updates (Sergey's Talk)

Monthly meetings of Run Group I Task Force provide an important forum to track progress, discuss problems, and plan solutions.

It is difficult to make specific plans in the presence of COVID uncertainties, but we need to make a baseline schedule and update it as conditions evolve. Updated reach projections based on experience with 2016 analyses:

2019 data @ 4.55 GeV opens up window of sensitivity

Run plan optimization is ongoing and depends on availability of specific energies.

Updated reach projections based 10 a_e HPS 2015 on experience with 2016 analyses: 10^{-5} $a_{\mu\pm 2\sigma}$ BaBar Mainz 2019 data @ 4.55 GeV opens up 10^{-6} NA48/2 LHCb window of sensitivity 10^{-7} NA64 ϵ^2 HPS 2019+2021 10^{-8} 2021 data @ 3.7 GeV increases area of sensitivity 2.4× 10^{-9} 10^{-10} Orsay/E137/CHARM/U70 **HPS** Simulation Preliminary 10^{-2} 10^{-1} 10^{0} A' Mass (GeV)

Run plan optimization is ongoing and depends on availability of specific energies.

Updated reach projections based 10 a_e HPS 2015 on experience with 2016 analyses: 10^{-5} $a_{\mu\pm 2\sigma}$ Mainz BaBar 2019 data @ 4.55 GeV opens up 10^{-6} NA48/2 LHCb window of sensitivity 10^{-7} NA64 ϵ^2 HPS Full Lumi 10^{-8} 2021 data @ 3.7 GeV increases area of sensitivity 2.4× 10^{-9} 10^{-10} Full Run Plan (2021 + 107 days) Orsay/E137/CHARM/U70 **HPS** Simulation Preliminary more than doubles this again. 10^{-2} 10^{-1} 10^{0} A' Mass (GeV)

Run plan optimization is ongoing and depends on availability of specific energies.

LHCb – Run 2 (completed) and Run 3 (2021-2023)

Potential for reach in two mass ranges.

arXiv:1603.08926 [hep-ph]

Run 2 and Run 3 above dimuon threshold

 $A' \rightarrow \mu^+ \mu^-$

Unexpected long-lived backgrounds impacted expected reach.

Run 3 below the $D^{\star 0}$ - D^{0} mass difference

$$D^{\star 0} \rightarrow D^0 A'$$

 $A' \rightarrow e^+ e^-$

Requires upgraded vertex detector and triggerless readout = full recon in real time. backgrounds still unknown.

And Other Planned/Proposed Experiments (from European Strategy Update – arXiv:1910.11775)

CERN Vector Portal Outlook (from CERN PBC report)

https://arxiv.org/abs/1901.09966

CERN Vector Portal Outlook (from CERN PBC report)

https://arxiv.org/abs/1901.09966

CERN Status and Timelines

SLAC

A very nice talk by Mike Lamont for Snowmass outlines the planned and potential facilities at CERN for these experiments:

https://indico.fnal.gov/event/44819/contributions/193721/attachments/132920/163635/DS-facilities-RF6-kickoff.pdf

			2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
		SPS	LS2						LS3					
	LHC LS		S2	Run 3				LS3			Run 4			
North Area	NA64-electron	Operational	L	S2		Data	Taking							
	NA64-mu	< 1 MCHF	Stu	dies	Test	Pilot	Phase 1							
	NA61/Shine	< 2 MCHF	Detector upgrade			Data	Taking					Data Taking		
	MUonE	< 2 MCHF	Preparation		Pilot	Run 1	Run 1 Data Taking							
	NA62-beamdump < 1 MCHF Studies		1e18 PoT in Run 3											
	KLEVER	~40 MCHF	Eol/proposal		R&D/Construction			Installation			Data Taking			
	COMPASS++	~10 MCHF	Studies/	proposal	Pha	ase1 Data Ta	king/Studies/R	&D	Installation			Data Taking		
LHC	ALICE fixed target	<5 MCHF				Desig	n/tests		Prepa	ration/Constr	uction		Data Taking	
	LHCb fixed target	<5 MCHF		Design	Const	truction and t	testing	Data		LS3			Data Taking	
	LHC Spin	~5 MCHF	Study		R&D			Production/Installation			Data Taking			
	FASER	~5 MCHF	Insta	llation	Data Taking			Up	ograde - phase	e 2	Data Taking			
	MATHUSLA	<100 MCHF		Fun	ding to test de	esign			Construction				Data Taking	
	CODEX-b	<5 MCHF	Eol		Beta		Beta da	Beta data taking Pro		duction/Installation		Data Taking		
	MilliQan	<5 MCHF	Demonstrator		Funding/Construction				Upgrade		Data Taking			
SPS	LDMX/eSPS	<10 MCHF			Studies		Proc	luction/Instal	ation		Data Taking			
	SHiP	~70 MCHF	CDR	CDR		TDR/Prototypes		Production/cor		struction Insta		allation Dat		Taking
	TauFV	tbc	De	sign	CDR TDR/Pr		ototypes	Production/construct		ction Install		Illation Data		Taking
TEOU				Des 1			C		Data Takina					
TECH			. Prod		Iction/construction Commission			Data Taking						
			Lal Shu		Design, prototyping, con		typing, const	truction, integration and commissioning (s						
			LOI	Stu	dies Chu	diaa								
	AION-100	tDC			Stu	dies								
FACILITY	AWAKE	~15 MCHE	Pren/co	astruction		AWAK	(F Run 2		153	AWAKE++?				
	eSPS	~80 MCHF	CDR		TDR		Prepa	aration/Construction			Data Taking			
	Beam Dump Facility	~160 MCHF	CDR		TDR		Construction/Installation			- ata raning	Operation			
	Gamma Factory	~2 MCHF		CDR		SPS Proof of	Principle/TDR			Preparation		LHC	demo	
	nuSTORM	>160 MCHF	Study	C	CDR		TDR/Pr		ototyping			Approval		
		rototype (DE) ~20 MCHF Study			DR TDR				Construction Data Taking					

SeaQuest/SpinQuest/... @ FNAL

DarkQuest proposal to DMNI FOA was declined: funding for ECal addition and DAQ/Trigger upgrade required for operation to 1.4E18 (DarkQuest1) and 1E20 (DarkQuest 2)

LongQuest concept adds fast tracking and particle ID, and extends apparatus to longer baseline to increase sensitivity

These "concepts" are little more than ideas, founded on recognition that there is a highly valuable apparatus sitting on an ideal beamline with a lot of potential as a dark sector experiment.

A FNAL-led group is still actively pursuing this, where the first steps still look like continued cooperation with NP program.

SeaQuest/SpinQuest/... @ FNAL

SeaQuest/SpinQuest/... @ FNAL

DarkQuest proposal to DMNI FOA was declined: funding for ECal addition and DAQ/Trigger upgrade required for operation to I.4E18 (DarkQuest1) and IE20 (DarkQuest 2)

LongQuest concept adds fast tracking and particle ID, and extends apparatus to longer baseline to increase sensitivity

These "concepts" are little more than ideas, founded on recognition that there is a highly valuable apparatus sitting on an ideal beamline with a lot of potential as a dark sector experiment.

A FNAL-led group is still actively pursuing this, where the first steps still look like continued cooperation with NP program.

My Take on These Other Efforts

On the real axis

- LHCb operating, backgrounds for displaced search are unknown
- NA62 already operating, few caveats
- NA64 already operating, few caveats
- FASER Run 3 funded and under construction, no obvious caveats for A' search

Likely to become real

- FASER HL-LHC requires larger apparatus
- LDMX on track but not yet approved, A' reach based on pheno studies.

Future Unclear

- SeaQuest/DarkQuest powerful, inexpensive, lacking clear path for support
- REDTOP Promising concept, expensive (<u>https://arxiv.org/abs/1910.08505</u>)

Likely to remain imaginary

- AWAKE operational scenarios presented have not been realistic
- SHiP appears to be cost prohibitive

Some others not mentioned, Darklight, VEPP-3, Mu3e, PADME, Belle-II, have little potential overlap with HPS

We passed a major milestone in the PAC review, and used the exercise as a vehicle to advance key goals of the experiment.

Having cleared that hurdle, there is a lot of work required to reach some exciting goals ahead, achievable in the coming year with sufficient effort:

- analyzing the 2019 dataset to search for A' in highly motivated part of the parameter space.
- expanding HPS physics case to include SIMPs, with the potential for discovery already with 2016 data
- preparing to operate the experiment again next year to collect a more significant dataset still

It's a great time to get more involved, especially for any new students.

One more thing: Snowmass creates a unique opportunity to explore expanding the physics case further, beyond minimal A' and SIMPs.