
hps-java tracking sw update

11/19/2020

PF

2

Introduction

• Lot of work went on tracking side for support of new features
• However:  

- Not all the work was done in separate commits/issues (bad practice and I’m
responsible for that) 
- All the changes are in a main branch called pass1-dev_fix which should
include all stable changes for 2019 processing.

• Today I’ll start discussing some of the changes made and their impact 
- ShapeFitter 
- KalmanFilter 
- Jna support for GBL

3

Some timing checks

• Comparison in processing time
between the master and pass1-
dev_fix branch
• Only Kalman Filter was active

in the pass1-dev_fix branch
• Optimistic scenario where we

run only the KF for track finding
• Check on FEEs and V0 skims
• From LCIO but re-running the

ShapeFits
• In current branch main bottleneck

is tracking. Hit shape fitting is the
second most expensive
processor

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Total Events Processed

0

20

40

60

80

100

120

140

160

180

200

Ev
ts

 /
s

LCIOs FEE MC 4.55 GeV - 2019 Release

LCIOs FEE MC 4.55 GeV - 2016 Release

LCIOs Run 10031 - 2019 Release

LCIOs Run 10031 - 2016 Release

4

Changes to the ShapeFitter

• Originally in iss730-> merged into pass1-dev_fix
• Only few relevant commit.
• Imported the full jMinuit package into hps-java. Will be located in  

tracking/src/main/java/org/hps/minuit/ 
Looks like lot of extra code, but aim is to fix couple of timing bottlenecks found in computing simple
hardcoded quantities (like atan(2)). In the future if we pass to MIGRAD instead of Simplex we have full
control of the jMinuit package for speed up modifications if we need to.

https://github.com/JeffersonLab/hps-java/commit/9f442c1c932b4e214cf05fcd4f44022453119bbf#diff-b72c018c5642c7d1c8d2504ca4dd47fe5a3ae96783301678fb2723dd364f097d
https://github.com/JeffersonLab/hps-java/commit/9f442c1c932b4e214cf05fcd4f44022453119bbf#diff-b72c018c5642c7d1c8d2504ca4dd47fe5a3ae96783301678fb2723dd364f097d

5

Effects of the ShapeFitter change

• I’ve tested the effect of these modifications in terms of timing
• Shape fitter code improved in speed from 8Hz to 30Hz.
• Using Migrad push down the processing time back to 6.50 Hz
• Going back to old processing time, but using better shape fitter can be justified if

tracking/physics improvement is substantial => still need to be done
• Checked speed up when using ejml version in the shape fitter for solving the linear

algebra on V0 skims evio files. After improvements still bottleneck

6

JNA Support for C++ GBL

• The GBL library can be loaded via JNA
• The GBL repository with the correct wrappers is stored in my personal github area - not optimal. Should be centrally

deployed and could go into hps-java or external in jefferson lab. Planning to push it to the terascale repository when I finish
up the examples and unit-tests.

• The library is only loaded at run-time if one needs to run alignment: no effect on the nominal processing.
• Separate classes and drivers ensure that nominal processing is not touched
• No refit is done in the JNA implementation (but can be done and has been tested and validated). Only the trajectory and the

collection of the derivatives into the Millebinary is done

Nominal reco Jna reco

GBLRefitterDriver.java

Gblexample1.java

SimpleGBLTrajAliDriver.java

GblPoint.java GblPointJna.java

MakeGblTracks.java GblTrajectoryMaker.java

HpsGblRefitter.java HpsGblTrajectoryCreator.java

GblTrajectory.java GblTrajectoryJna.java

GblexampleJna1.java
Tests

Base objects

Driver

Track->GBL Trajectory

MilleBinary.java MilleBinaryJna.java

7

Kalman Tracking

• The Kalman Filter package is organised in a separate package with respect to
nominal tracking

• Constant updates by Robert and recent update to ejml linear algebra package.
• The package is separated from nominal reconstruction pipeline and can be

brought in without breaking nominal pattern recognition
• Latest commits are quite mature for a MC and Data validation.

8

Kalman Pattern Recognition Status - ROBERT

• A lot of recoding was done to speed up some matrix
operations, gaining nearly a factor of 2 in speed:
– use the EJML (Efficient Java Matrix Library) package for matrix algebra
– Using only the EJML low-level procedural interface. The former object-

oriented style wasted too much time creating new memory space and
copying numbers at each calculation step.

• More work was done looking for and correcting some pattern
recognition mistakes.

• The most recent code is in branch pass1-dev_fix in Github.

9

2019 Data Track Finding - ROBERT

With 2 seed strategies
that include layer 0

16.5 ms per event

No layer 0 strategies
12.5 ms per event

The Kalman-based pattern recognition
can find a lot of short tracks, but we
pay some CPU price when including
the first two noisy layers in the
combinatoric finding and testing of 5-
hit seeds.
 These are CPU times for the
pattern recognition and fitting on a
Core-I7 notebook computer.

These are from
the standard
reconstruction, from

hps_010084.evio.
01042

Number of Hits per Track

10

2019 Data Track Finding - ROBERT

11/19/2020

With 2 seed strategies
that include layer 0

No layer 0 strategies

Note that no cut has been
made on relative timing
between the calorimeter
and Kalman tracks.

Efficiency from 2019 Tri-trig MC
with all seed strategies.

For p>0.7 GeV and ≥10 sim hits,
the efficiency is 99.4% (these are
simple events, with no beam).

Momentum (GeV)

Tr
ac

k
Ef

fic
ie

nc
y

Kalman Number of Tracks Found

SeedTracker Number of Tracks Found Kalman Number of Tracks Found

11

2019 Kalman Data / MC Performance - ROBERT

GBL is similar, with a
mean of 10.4 and
rms of 9.5

Kalman GBL

Wrong hits per track 0.055 0.22

Number of tracks per event 1.83 1.61

Number of hits per track 10.9 10.7

Execution time per event 2.1 ms ?

ρ0 pull rms 1.12

ϕ0 pull rms 1.36

1/pt pull rms 1.09

tanλ pull rms 1.07

2019 MC

2019 Data

The mean is too
large in data; about
right in MC.

2019 Data

Mean chi-squared contribution
by layer

From GBL the
mean is 20.6

2

Track-to-Cluster Matching

● Hps-java track reconstruction missing track-to-cluster matching for
Kalman Tracks

● Currently updating track-to-cluster matching in hps-java to work for
both GBL and KF Tracks

● Using timing coincidence and simple “closest-distance matching
algorithm” to match RK4 extrapolated Tracks to Ecal face with Ecal
Clusters, based on minimum position residual dr

– KF Track extrapolation in KalmanInterface.java allows for
covariance matrix extrapolation (not saved though)

– Unique Track-Cluster matching enforced
● Track-to-cluster matching performance (efficiency+fake rate) evaluated

using Track and Ecal cluster truth information from MC

e+

y

x

z

Ecal Cluster

Reconstructed Track

Matched track-cluster pair

 by ALIC

3

Track-to-Cluster Matching

● Truth matched track-cluster dx residuals for GBL (top right) show
charge dependent bias

● KF (bottom right) show dx mean closer to 0, potentially indicating
better KF track extrapolation to Ecal

● GBL: Matching algorithm matches an ele track to cluster 80% of the
time, 98% for positrons

– 17% of ele matches / 9% of pos matches are incorrect based
on truth information

● KF: Matching algorithm matches an ele track to cluster ~65% of the
time, 100% for positrons

– ~17% of ele matches / 9% of pos matches are incorrect based
on truth information

● KF track-to-cluster matching efficiency seems strangely low
compared to GBL tracks

– Potential bug in truth validation code...

– Currently validating truth-matching + cleaning code

– Also investigating KF vs GBL efficiency discrepancy

 by ALIC

