hps-java tracking sw update

E

11/19/2020

Introduction

e1 An

e Lot of work went on tracking side for support of new features
e However:
- Not all the work was done in separate commits/issues (bad practice and I'm
responsible for that)
- All the changes are in a main branch called pass1-dev_fix which should
include all stable changes for 2019 processing.
e Today I'll start discussing some of the changes made and their impact
- ShapekFitter
- KalmanFilter
- Jna support for GBL

Some timing checks

e Comparison in processing time
between the master and pass1-
dev_fix branch
e Only Kalman Filter was active

in the pass1-dev_fix branch
e Optimistic scenario where we
run only the KF for track finding
e Check on FEEs and VO skims
 From LCIO but re-running the
ShapekFits

* In current branch main bottleneck
is tracking. Hit shape fitting is the
second most expensive
processor

Evis/s

200

180

160 :_

===@===: |CIOs FEE MC 4.55 GeV - 2019 Release
===@===: |CIOs FEE MC 4.55 GeV - 2016 Release

:| w=——@=—LCIOs Run 10031 - 2019 Release

i| e LCIOs Run 10031 - 2016 Release

Total Events Processed

Seeding+TrackFindingk

Raw Hit Shape Fitter

LCIO Output Writer f
ECAL Hit Processor E
Vertexingf

Tracks decorator

GBL Track RefitET
a
=
d
i

Space Point formation

Other{ | B LCIOs Run 10031 - 2016 Release||
L ‘

10

20 30 40 50
Processing Time (% of total)

60 70

Seeding+TrackFindin
Raw Hit Shape Fitter
GBL Track Refit|

LCIO Output Writer
ECAL Hit Processor
Vertexing

Tracks decorator

Space Point formation
Other

Il [LCIOs Run 10031 - 2019 Release :

0 10

20 30 40 50
Processing Time (% of total)

60 70

Changes to the ShapeFitter

 Originally in iss730-> merged into pass1-dev_fix

* Only few relevant commit.

» Imported the full jMinuit package into hps-java. Will be located in
tracking/src/main/java/org/hps/minuit/
Looks like lot of extra code, but aim is to fix couple of timing bottlenecks found in computing simple
hardcoded quantities (like atan(2)). In the future if we pass to MIGRAD instead of Simplex we have full
control of the jMinuit package for speed up modifications if we need to.

> Commits on Sep 22, 2020

Fixed Style Errors

8 d924a86 <>
Graf committed on Sep 22
Fix indentation li] 57cdadb '
£ pbutti committed on Sep 22
> Commits on Sep 21, 2020

Change 2*atan(1.) with FastMath.P1/2. e 9f442¢1 <>
£ pbutti committed on Sep 21
Fix bug in checking amplitudes Verified (] 8edbdde <O
£J pbutti committed on Sep 21
Use ejml in ShaperLinearFitAlgorithm) 53a2b2a <>
£ pbutti committed on Sep 21
Use ejml in ShaperLinearFitAlgorithm) 24db391 <

£J pbutti committed on Sep 21

https://github.com/JeffersonLab/hps-java/commit/9f442c1c932b4e214cf05fcd4f44022453119bbf#diff-b72c018c5642c7d1c8d2504ca4dd47fe5a3ae96783301678fb2723dd364f097d
https://github.com/JeffersonLab/hps-java/commit/9f442c1c932b4e214cf05fcd4f44022453119bbf#diff-b72c018c5642c7d1c8d2504ca4dd47fe5a3ae96783301678fb2723dd364f097d

Effects of the ShapeFitter change

>
)

tn

5..
é

* I've tested the effect of these modifications in terms of timing
e Shape fitter code improved in speed from 8Hz to 30Hz.
e Using Migrad push down the processing time back to 6.50 Hz
e Going back to old processing time, but using better shape fitter can be justified if
tracking/physics improvement is substantial => still need to be done
e Checked speed up when using ejml version in the shape fitter for solving the linear
algebra on VO skims evio files. After improvements still bottleneck

So This is the original code

Event: 8574118, Run: 10031, Sequence: 500, 0.00 ms/event, ©.00 Hz, Avg: 0.00 Hz
Event: 8574618, Run: 10031, Sequence: 1000, 119.54 ms/event, 8.37 Hz, Avg: 7.85 Hz
Event: 8575118, Run: 10031, Sequence: 1500, 131.52 ms/event, 7.60 Hz, Avg: 7.77 Hz

This is my version with ejml

Event: 8574118, Run: 10031, Sequence: 500, 0.00 ms/event, ©.00 Hz, Avg: 0.00 Hz
Event: 8574618, Run: 10031, Sequence: 1000, 33.57 ms/event, 29.79 Hz, Avg: 25.98 Hz
Event: 8575118, Run: 10031, Sequence: 1500, 37.24 ms/event, 26.85 Hz, Avg: 26.27 Hz

-

JNA Support for C++ GBL

tn

1 AR

e M\
The GBL library can be loaded via JNA

The GBL repository with the correct wrappers is stored in my personal github area - not optimal. Should be centrally
deployed and could go into hps-java or external in jefferson lab. Planning to push it to the terascale repository when | finish
up the examples and unit-tests.

The library is only loaded at run-time if one needs to run alignment: no effect on the nominal processing.

Separate classes and drivers ensure that nominal processing is not touched

No refit is done in the JNA implementation (but can be done and has been tested and validated). Only the trajectory and the
collection of the derivatives into the Millebinary is done

Nominal reco Jna reco
Driver
GBLRefitterDriver.java EE— SimpleGBLTrajAliDriver.java
HpsGblRefitter.java —— HpsGblTrajectoryCreator.java
_ Track->GBL Trajectoa/
MakeGblTracks.java — blTrajectoryMaker.java
GblPoint.java —_— GblPointJna.java
GblTrajectory.java Base objects Gp|TrajectoryJna.java

Tests)
Gblexample1.java —_— GblexampleJna1.java

MilleBinary.java B MilleBinaryJna.java 6

Kalman Tracking

O

O

=0~

=0~

* The Kalman Filter package is organised in a separate package with respect to

nominal tracking

1 An
o b M\

e Constant updates by Robert and recent update to ejml linear algebra package.
* The package is separated from nominal reconstruction pipeline and can be

brought in without breaking nominal pattern recognition
e Latest commits are quite mature for a MC and Data validation.

Commits on Sep 15, 2020

Finished rewrite to use EJML matrices. Add print of parameters and cu... --

robertprestonjohnson committed on Sep 15

Commits on Oct 21, 2020

Added two search strategies, but also a switch to limit the number of... -
robertprestonjohnson committed 6 days ago

Commits on Oct 20, 2020

Added checks on covariance matrix (no NaN and positive) when evaluati... ..
robertprestonjohnson committed 7 days ago

Commits on Sep 25, 2020

Added option to use 5-hit tracks, with vertex constraints. Required m... -
robertprestonjohnson committed on Sep 25

G

G

(]

G

bc77544

d8cbhf43

2c0760c

1681816

<O

<

<

<

Kalman Pattern Recognition Status - ROBERT

o A lot of recoding was done to speed up some matrix
operations, gaining nearly a factor of 2 in speed:
— use the EJML (Efficient Java Matrix Library) package for matrix algebra

— Using only the EJML low-level procedural interface. The former object-
oriented style wasted too much time creating new memory space and
copying numbers at each calculation step.

« More work was done looking for and correcting some pattern
recognition mistakes.

« The most recent code is in branch passl-dev fix in Github.

2019 Data Track Finding - ROBERT

o1 AL
LS | Y g \ 4
. GBL number of hits e Kalman Track Number Hits
x10 number of hits X Kalman Track Number Hits
1%~ These are from — E'?"Li“ b 2°'292§§ - oan 812
B ean . .
B RMS 1629 | gol— RMS 2.235
eo_the statnda?j from C With 2 seed strategies
~ reconstruction B .
B ’ . 80— that include layer O
60l — hps_010084.evio. -
- 01042 60—
ol - 16.5 ms per event
B 40_—
20_— 20}
S R RN ¥ R [T B B S S P
Kalman Track Number Hits
The Kalman-based pattern recognition o i ok oo
. - Mean 8.734
can find a lot of short tracks, but we - No laver O strat AMS 271
. . . C o layer O strategies
pay some CPU price when including 40000 — 12.5 ms per event
the first two noisy layers in the st000f-
combinatoric finding and testing of 5- -
hit seeds. e
These are CPU times for the 10000
pattern recognition and fitting on a el
0 2 4 6 8 10 12 14 16 18 20

Core-17 notebook computer.

Number of Hits per Track

2019 Data Track Finding - ROBERT

GBL number tracks Kalman number of tracks
GBL number tracks | — "E‘“n’;‘raigs"‘mbe;“’s’g‘;‘:;
80000 - Entries 167379 = f
. v o\ E [-
70000 — =
60000 Note that no cut has been =3 With 2 seed strategies
50000~ made on relative timing = that include layer 0
40000~ between the calorimeter =
30000 and Kalman tracks. =
20000 — ;—
10000 —
~ 1 | | |]) . L S T P T DT T D i T
L R I e S <) i 2 3 4 5 6 7 8 9 10
SeedTracker Number of Tracks Found Kalman Number of Tracks Found
Kalman track efficiency vs momentum Kalman number of tracks P e——T—,
i e 2| g0 s e
- RMS 1.078 - RMS 1.286
03 Efficiency from 2019 Tri-trig MC = No layer O strategies
g with all seed strategies -
5 O.GT g : IOO_—
S -
- I~ . . -
w04 For p>0.7 GeV and =10 sim hits, 00—
Y4 | -
© oal] the efficiency is 99.4% (these are ooF
= 02 . . —
N simple events, with no beam). -
o_ lll'lllllllllllllll"‘ll'llll’llll" o_lIIIIIIIIIIIIIIIIIIIIIIIT| llIIIIIlIIIIII
0 0.5 1 1.5 2 25 3 3.5 4 0 1 2 3 4 5 6 7 8 9 10
Momentum (GeV
11/19/2020 (GeV) Kalman Number of Tracks Found 10

2019 Kalman Data / MC Performance - ROBERT

u ol AS
(c]:]R =N
Kalman Track Chi2, >=12 hits
Wrong hits per track 0.055 0.22 200 Ewos 2716
RMS 10.55

350
Number of tracks per event 1.83 1.61 . GBL is similar, with a
Number of hits per track 10.9 10.7 2s0EL mean of 10.4 and
Execution time per event 2.1ms ? 2008 rms of 9.5
150 -
PO pull rms 1.12 100 2019 MC
@0 pull rms 1.36 %0
/ | | 00 10 20 30 40 50 60 70 80 90 100
1/pt pull rms 1.09

Kalman Track Chi2, >=12 hits

tanA pull rms 1.07 rr—

2200:_ Entries 398‘;6
. T o G
c - 1800 .
5 Mean chi-squared contribution 5 The mean is too
3 by layer 1600)
E . 1400F- large in data; about
(e} - . .
3 12001 right in MC.
] 1000
705 2019 Data 800 2019 Data
o] 600
0 wofl From GBL the
0 2 4 6 8 10 12 14 = .
Layer 200 mean is 20.6
% 562030 a0 50607080 90 100

Track-to-Cluster Matching

(7))

Hps-java track reconstruction missing track-to-cluster matching for
Kalman Tracks
Currently updating track-to-cluster matching in hps-java to work for
both GBL and KF Tracks
Using timing coincidence and simple “closest-distance matching by ALIC
algorithm” to match RK4 extrapolated Tracks to Ecal face with Ecal
Clusters, based on minimum position residual dr
- KF Track extrapolation in Kalmaninterface.java allows for Matched track-cluster pair
covariance matrix extrapolation (not saved though)
- Unique Track-Cluster matching enforced
Track-to-cluster matching performance (efficiency+fake rate) evaluated
using Track and Ecal cluster truth information from MC

Reconstructed Track

Track-to-Cluster Matching

GBLTracks_track cluster_truth_matched_dx

by ALIC

Truth matched track-cluster dx residuals for GBL (top right) show

charge dependent bias

KF (bottom right) show dx mean closer to 0, potentially indicating

better KF track extrapolation to Ecal

GBL.: Matching algorithm matches an ele track to cluster 80% of the

time, 98% for positrons

- 17% of ele matches / 9% of pos matches are incorrect based

on truth information

KFE: Matching algorithm matches an ele track to cluster ~65% of the

time, 100% for positrons

- ~17% of ele matches / 9% of pos matches are incorrect based

on truth information

KF track-to-cluster matching efficiency seems strangely low

compared to GBL tracks

- Potential bug in truth validation code...
- Currently validating truth-matching + cleaning code
- Also investigating KF vs GBL efficiency discrepancy

[

—— GBLTracks_ele_truth_matched

100
[= —— GBLTracks_pos_truth_matched
80 B
— GBLTracks_ele_track_cluster_truth_matched_dx
B Entries 577
g - Mean -5.97
B Std Dev 23.52
40 — GBLTracks_pos_track_cluster_truth_matched_dx
= Entries 508
- Mean 1.982 |
20 Lk Std Dev 4.133
e e B P e S e
—%OO -150 -100 -50 0 50 100 150 200
X (mm)
KalmanFullTracks_track_cluster_truth_matched dx
180 — J
160 —
140 — —— KalmanFullTracks_ele_truth_matched
120— —— KalmanFullTracks_pos_truth_matched
100[—
= Entries 808
80— Mean -1.357
- Std Dev 26.85
60 j | KalmanFullTracks_pos_track_cluster_truth_matched_dx
- Entries 440
40 — Mean -0.898
— Std Dev 3.865
:—‘ T | le In | MUHMEJI F‘—r_u—\.r'x_ PR I (o O O (S O |
—(500 -150 -100 —50 100 150 200 3

X (mm)

