HPS Collaboration Meeting

HPS Trigger

Valery Kubarovsky Jefferson Lab

November 19, 2020

Description and Tuning of the HPS 2019 Trigger

S.K. McCarty, R. Paremuzyan University of New Hampshire Durham, New Hampshire 03824

V. Kubarovsky, B. Raydo Thomas Jefferson National Accelerator Laboratory Newport New, Virginia 23606

The Heavy Photon Search experiment is based in the Thomas Jefferson National Accelerator Facility and is designed to search for a prompt, electro-produced dark photon. This is done using both a resonance search analysis of the e^+e^- invariant mass spectrum for prompt-decay particles, and using a vertex analysis for delayed-decay particles.

Because the Jefferson Lab electron beam is very intense, data is produced a rate exceeding the ability of HPS to record it. As such, it is necessary to develop a trigger system to select only the data most likely to be useful during analysis. Building off the work of the 2015 and 2016 runs, a series of triggers are designed to enable this.

- Kyle wrote comprehensive detailed 37 pages Trigger analysis note
- We are all lucky to have such students in our collaboration
- Thank you Kyle!

HPS Trigger Detectors

- Silicon vertex Detector (SVT) does not participate in the trigger
- The Calorimeter, 442 lead tungstate (PbWO₄) crystals
 - Split into two identical halves (top and bottom)
 - The main trigger primitives is a cluster (Energy, Coordinate) in a 3x3 crystal window
 - Position dependent energy cut (PDEC) was implemented for the positron trigger
- The Hodoscope
 - Split into two identical halves (top and bottom)
 - -Located at the positron side only
 - -Has two layers, layer1 and layer 2, with 5 tiles in each layer
 - The main trigger primitive is the hit (only coordinate)
 - Correlation matrix was used for the coincidence between layer1 and layer 2 hodoscope planes
- Correlation matrix between hodoscope hits and calorimeter clusters
 was implemented for the positron trigger

2019 HPS Triggers

• Positron trigger

- 4 tops
- 4 bottoms
- Pairs (top-bottom)
 - old 2016 trigger
 - Moller
 - 2 gamma
 - Muon trigger
- 2 gammas (anywhere in the calorimeter)
- 3 gammas (anywhere in the calorimeter
- FEE
 - Тор
 - Bottom
- Special triggers
 - Pulser
 - Hodoscope
 - Cosmic
 - LED
 - Faraday Cup

	hps_trigger_expert.adl						
Runŧ	Run#10637 Target: 20 um W HPS Triggers QLatency 09/01/2019 13:59:18						
Bear	Beam Currents (nA) 2C21: 126.83 FCup: 119.26 Livetime (%): 94.90						
#	Description	Raw Rate (Hz)	Prescaled Rate (Hz)	z	Prescale		
00	Single-0 Top	1909370.0	86.0	0,2	20000		
01	Single-1 Top	32517.0	0.0	0.0	0		
02	Single-2 Top (e+)	7861.0	7872.0	20,2	1		
03	Single−3 Top (e+/Hodo)	10292.0	10197.0	26,1	1		
04	Single-0 Bottom	2073968.0	92.0	0,2	20000		
05	Single-1 Bottom	30844.0	0.0	0.0	0		
06	Single-2 Bottom (e+)	8291.0	8446.0	21.7	1		
07	Single-3 Bottom (e+/Hodo)	10703.0	10602.0	27,2	1		
08	Pair-0 (Old e+e-)	15431.0	149.0	0,4	100		
-09	Pair-1 (Moller)	120077.0	106.0	0,3	1000		
10	Pair-2 (2gamma)	80940.0	147.0	0,4	500		
11	Pair-3 (mu+mu-)	729.0	686.0	1.8	1		
12	LED	0,0	0,0	0.0	0		
13	Cosmic	0,0	0,0	0.0	0		
14	Hodoscope	6197356.0	0,0	0.0	0		
15	Pulser	100.0	102.0	0.3	1		
16	Multiplicity-0 (2gamma)	170979.0	86.0	0,2	2000		
17	Multiplicity-1 (3gamma)	8679.0	107.0	0,3	80		
18	FEE Top	170.0	157.0	0.4	1		
19	FEE Bottom	161.0	170.0	0.4	1		
		Sum:	39005.00				
Fror	nt Panel (Hz): Fa	raday Cup 4648.0	N/A	0.0			
FADO) Data Rate (MB/s):	hps1 49 <u>.</u> 96		60.5	9		

Position Dependent Energy Cut (PDEC)

- 4 different versions to choose from
 - -99% acceptance
 - -97% acceptance
 - -95% acceptance
 - -93% acceptance
- Trident events were used for the tuning PDEC
- Beam energy dependent!

Cluster Energy vs. Position

$$x_{\text{cluster}} \ge x_{\text{threshold}}$$
$$E_{\text{cluster}} \ge C_0 + C_0 x + C_1 x^2 + C_2 x^3$$

Positron Triggers

<u>Top</u>

- #00 Singles-0.
 - Low energy cluster (150-8191) MeV
 - Calorimeter iX index=(-23,+23). Full detector
- **#01 Singles-1** Positron.
 - Cluster energy= (200-3000) MeV
 - Calorimeter iX index=(+4,+23)
- #02 Singles-2 Positron.
 - Cluster energy=(200-3000) MeV
 - Calorimeter iX index= (+4,+23)
 - Position Dependent Energy Cut
- #03 Singles-3 Top Positron.
 - Cluster energy=(200-3000) MeV
 - Calorimeter iX index= (+4,+23)
 - Position Dependent Energy Cut
 - Hodoscope

Bottom

• Symmetric to Top

Positron trigger

				September, 2019 I=120 nA					
				E _{min}	E _{max}	PDEC	Hodo	Rate	Pre scale
	#00	Single-0	Тор	150	8191			1.9M	20000
	#0 I	Single-I	Тор	200	3000			32K	0
	#02	Single-2	Тор	400	3000	93%		7.7K	2
*	#03	Single-3	Тор	200	3000	99%	Geom	I0K	l I
	#04	Single-0	Bot	150	8191			2.0M	20000
	#05	Single-I	Bot	200	3000			31K	0
	#06	Single-2	Bot	400	3000	93%		8.3K	2
*	#07	Single-3	Bot	200	3000	99%	Geom	I0K	l I
				• Tri	gger ve	rsion h	ps_v12_1	.trg	

- Total trigger rate 25kHz,
- Lifetime 95%

Pair Triggers, FEE and others

				E _{min}	E _{max}	Rate	Pre scale
	#08	Pair-0	Old e⁺e⁻	300	3000	15K	100
	#09	Pair-I	Moller	300	3000	120K	1000
	#10	Pair-2	2 gammas Top-Bot	300	3500	80K	500
	#11	Pair-3	Muons	80	300	730	1 - E
Muons							
No prescale	#16	2 gammas	Top or Bot	150	8191	170K	20000
FEE	#I 7	3 gammas	Top+Bot	200	3000	8.7K	0
	#18	FEE	Тор	2600	5200	170	1.1
	#I9	FEE	Bot	2600	5200	161	1.1

FEE prescales

#	pr	escale	regi	on
#		regio	on xm	in
#			reg	ion xmax
#				prescale
#				
VTP_HPS_FEE_PRESCALE	0	-22	-20	0
VTP_HPS_FEE_PRESCALE	1	-19	-16	8
VTP_HPS_FEE_PRESCALE	2	-15	-7	128
VTP_HPS_FEE_PRESCALE	3	-6	-2	1024
VTP_HPS_FEE_PRESCALE	4	-1	6	512
VTP_HPS_FEE_PRESCALE	5	7	12	12
VTP_HPS_FEE_PRESCALE	6	13	23	0

Region	Prescale		
I	I		
II	9		
II	129		
IV	1025		
V	513		
VI	13		
VII	I		

Special Triggers

			Rate	Prescale
#12	LED	Calorimeter	15K	0
#13	Cosmic	Calorimeter	120K	0
#14	Hodoscope		6.3M	0
#15	Pulser		100	1
#16 Front Panel	Faraday Cup		4648	5

DAQ and Trigger Performance

• I=120 nA

- DAQ rate 25 kHz
- Data Rate 325 MB/s
- Event size 13 KB
- Lifetime 95%
- Trigger version hps_v12_1.trg

Run# 10656 Target: 20 um W HPS Triggers DLatency 09/03/2013 02:32:50							
Beam Currents (nA) 2021; 127.97 FCup: 120.48 Livetime (%): 94.70							
#	Description	Raw Rate (Hz)	Prescaled Rate (Hz)	z	Prescale		
00	Single-0 Top	1950547.0	87.0	0,2	20000		
	Single-1 Top	32839.0	0.0	0,0			
02	Single-2 Top (e+)	7867.0	7970.0	20,0			
03	Single-3 Top (e+/Hodo)	10408.0	10536.0	26,4			
04	Single-0 Bottom	2113550.0	94.0	0,2	20000		
05	Single-1 Bottom	31733.0	0.0	0.0	0		
06	Single-2 Bottom (e+)	8627.0	8577.0	21.5	1		
07	Single-3 Bottom (e+/Hodo)	10922.0	10768.0	27.0			
08	Pair-0 (Old e+e-)	15798.0	152.0	0.4	100		
09	Pair-1 (Moller)	122979.0	110.0	0,3	1000		
10	Pair-2 (2gamma)	83160.0	152.0	0.4	500		
11	Pair-3 (mu+mu-)	766.0	722.0	1.8	1		
12	LED	0,0	0,0	0,0	0		
13	Cosmic	0,0	0,0	0,0	0		
14	Hodoscope	6275500.0	0,0	0.0	0		
15	Pulser	99.0	101.0	0.3	1		
16	Multiplicity-0 (2gamma)	175732.0	88.0	0,2	2000		
17	Multiplicity-1 (3gamma)	8820.0	111.0	0.3	80		
18	FEE Top	206.0	190.0	0.5	1		
19	FEE Bottom	195.0	194.0	0.5	1		
Sum: 33852.00							
Fror	nt Panel (Hz): Fa	raday Cup 4721.0	N/A	0.0			
FADO	Data Rate (MB/s):	hps1 50,68	hps2	60.3	7		

Linier dependence trigger rate with current

Only 11% randoms at 200 nA

250

n۸

Pair, Muon and FEE

 $\frac{Signal+Bgrd}{Signal}\sim 6~@200nA$

Trigger Validation

- Validation of the trigger firmware performance
 - -Random trigger data
 - -Full simulation of the trigger firmware based on the FADC data
 - -Selection of the events that satisfied the trigger conditions
 - Test the hardware trigger bits.
- Absolute trigger efficiency estimation
 - -Random trigger data
 - -Selection of the events that satisfied the trigger conditions
 - Test the hardware trigger bits.
 - Found some firmware bugs during validation (no clusters with 8 and 9 hits were accepted, fixed by Ben)
 - -Adjusted Cal x Hodo coincidence matrix (remove 1% inefficiency)
 - Inefficiency less then 1.3% at the end of validation

To Do List

MC simulation

- New beam energy \rightarrow adjust trigger parameters
- Positron calorimeter energy cuts
- Position dependent energy cut
- Elastic scattering cuts
- Neutral trigger cuts

Off-line reconstruction

- Fast data cooking
- Select events of interest
- Make trigger validation

Conclusion

- 2019 HPS trigger was substantially modified
- This modification was successful
- The positron trigger was designed, implemented and validated
- Muon trigger was implemented
- FEE trigger was significantly improved
- Multiphoton triggers were added
- The trigger efficiency was at the level of 99% or better
- For the future 2021 run MC and off-line reconstruction program has to be ready well in advance the experiment will start

End of story

Plots for each trigger bit show the successful reconstructed trigger to VTP bank matches (Blue) and failures (Red) as a function of time in the FADC window. It was plotted as a function of FADC time so that window edge effects could be seen and ignored from the overall efficiencies. You can see that times near the beginning and end of the FADC window tend to cause problems because the ECAL pulses are clipped. Mismatches in the middle of the window can happen due to pile-up where the FADC hits can be ignored by the trigger or due to a bug.

Ben

Effect of the high hit rates on the FADC on the trigger logic (pile up hits are missed by trigger when within 32ns of each other) ~1% loss effect (roughly consistent with the FADC hit rate seen from hodoscope).

Change of persistency up to 64 ns (that was done after this study) eliminated any inefficiency due to the 32ns pileup feature.

ECal Efficiency

19

Production Single-3 trigger efficiency

Data: single2 trigger (ECal only PDEC trigger)

Single3 trigger (The production trigger)

- Hit in L1 is above threshold
- Hit in L2 is above threshold
- L1xL2 geom and time matching
- L1xECal_X geom and time matching
- L2xECal_X geom and time matching
- ECal PDEC (validated earlier)

Event's Selection

Clusters

- In-time cluster
- $E_{cl} < 3 \text{ GeV}$
- X_{cl} > 105

Tracks

- P > 0.85 GeV
- chi2/NDF < 5 (to avoid fake tracks)
- Positive charge
- Track-Cluster matched

About 2% failed \approx half of failed events failed "X_{Hodo} \otimes X_{ECal}"

See next slide for these failed events 20

Production Single-3 trigger efficiency

Inefficiency is 1.3%

