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Motivations
3

Discovery of point-like particles inside proton



Understanding the emergent phenomena of QCD

Hadron Structure Hadron formation 4

“In philosophy, systems 
theory, science, and art, 
emergence occurs when an 
entity is observed to have 
properties its parts do not 
have on their own, properties 
or behaviors which emerge 
only when the parts interact in 
a wider whole.”  Wiki

Observed entity

parts



What do we mean by “hadron structure” ?  (1D)

Interpretation in non-interacting QCD 

Parton momentum fraction relative to parent hadron
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parton distribution 
function (PDF)



How quarks and gluons are distributed?  

Momentum fraction



What do we mean by “hadronization” ?  (1D)

hadron momentum fraction relative to parent parton 

= all states except detected hadron h
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Fragmentation 
functions  (FFs)



How quarks and gluons are distributed?  

Number density of hadrons from 
parent parton
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Hadron structure in interacting theory
UV singularity  
when the field 
separation is 
zero

Definition of PDFs in field 
theory requires 
renormalization

PDFs will depend on 
renormalization scale and its 
RGEs are the famous DGLAP 
equations

Renormalization Dokshitzer–Gribov–Lipatov–Altarelli–Parisi

aka   DGLAP  



Spin structures

Helicity distribution

Transversity
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Extensions to 3D

Transverse momentum 
distribution -> TMDs

Impact parameter 
distribution -> GPDs

Longitudinal momentum fraction

PDFs
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So how do we get hadron structure from experimental data?

 Want to see 
internal structure 

But we only see debris

What part of this is the 
“internal structure’’?

Factorization
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Factorization in deep-inelastic scattering  (DIS)

Internal structure Collision dependent factor

Error of approximations

Approximations
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Factorization in other reactions
hadronization

SIA

SIDIS

structure + hadronization ..and many more
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...

Universality

SIA SIDISDIS

cross sections described by universal 
non-perturbative functions, e.g. PDFs, FFs
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The Bayesian inference
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Experiments = theory + errors 

Hadron 
Structure

Hadronization

RGE boundary conditions



The  QCD global analysis paradigm

PDF

Bayesian
 Inference

Hadronization

Hadron 
Structure

TMD
PDF

GPD

FF

TMD 
FF

Factorization

Exp.

Lat.
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1D collinear 
structures 

2D: transverse 
momentum  
structures 3D imaging

PDF
TMD
PDF GPDFF

TMD 
FF

Exp Lat.
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An example: JAM20-SIDIS
Moffat, Melnitchouk, Rogers, NS
arXiv:2101.04664

These lectures

https://arxiv.org/abs/2101.04664
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An example: JAM20-SIDIS Moffat, Melnitchouk, Rogers, NS
arXiv:2101.04664

https://arxiv.org/abs/2101.04664
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An example: JAM20-SIDIS Moffat, Melnitchouk, Rogers, NS
arXiv:2101.04664

PDFs

https://arxiv.org/abs/2101.04664
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An example: JAM20-SIDIS Moffat, Melnitchouk, Rogers, NS
arXiv:2101.04664

FFs

https://arxiv.org/abs/2101.04664
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An example: JAM20-SIDIS Moffat, Melnitchouk, Rogers, NS
arXiv:2101.04664

The simultaneous fit of 
PDFs and FFs provides 
new insights on nucleon 
strangeness   

https://arxiv.org/abs/2101.04664
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QCD carpentry in python

● We will use a jupyter-notebook available at 
https://github.com/QCDHUB/qcdcarpentry

● The lectures involves several exercises. I 
will give few minutes to work on them

● You need to have jupyter notebook 
available in your computer. All the required 
dependencies are listed. Use  $pip install 
xyz   to get libraries you don’t have.

● Ok, let’s take a look the notebook

Continue to 
Jupyter notebook

https://github.com/QCDHUB/qcdcarpentry
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Solving QCD’s beta function



The  running of the strong coupling 
We need a 
boundary condition 
to solve the RGE

The beta function is 
discontinuous 
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Solving the QCD beta function

3 4 5

To solve the RGE at any scale 
we need boundary conditions 
for 3,4,5 flavors 

Continue to 
Jupyter notebook
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Mellin transforms
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Mellin transforms
Mellin transform of f(x)

Inverse Mellin transform Complex contour 
integration

Can be done 
numerically
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Numerical implementation
Complex plane

real

im
ag

in
ar

y

Integration contour

real imaginary
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Example

Pole at N = -1

C is chosen so 
that all the poles 
are in the left of C

Right most Pole of F(N)

Phi is chosen to be 
greater than pi/2



36

Gaussian Quadrature
Only for range -1 to 1

For arbitrary range
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Inverse mellin transform with Gaussian Quadrature

real

im
ag

in
ar

y

real imaginary

Segment j

We only need to know F 
at the segment gaussian 
points 
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Mellin convolutions
Definition of a convolution of 
two functions

Mellin transform 
makes a convolution 
an ordinary product
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Why Mellin transforms?

PDFs obeys a system of 
integro differential 
equations (DGLAP)

The kernels are known 
analytically. They are 
called “splitting 
functions”

This is a matrix equation

This is a “mellin convolution”

Continue to 
Jupyter notebook
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Solving DGLAP
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DGLAP in Mellin space

System of 
integro-differential 
equations

Ordinary system of 
differential equations

Can be solved 
Analytically!

Splitting kernels



44

Flavor composition

Just linear 
transformations

11 equations for 5 
active quark 
flavors + glue

11 = 8 + 2 + 1
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Flavor singlet and non-singlet evolution

Non-singlet 
evolution

Singlet evolution

Non singlet 
combinations 
decouples from glue
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Solving the non-singlet evolution equations

Splitting functions 
depend only on 
alphaS

alphaS at the final 
scale

alphaS at the input 
scale
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Solving the singlet evolution equations Eigenvalue 
decomposition
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Flavor decomposition
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Evolution flow Evolved PDFs

Input scale PDFs
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Boundary conditions
We need boundary 
conditions at each 
mass threshold

Nf=3

Nf=4

Nf=5

Scales where 
DGLAP is not 
applicable

Continue to 
Jupyter notebook



51



52



53

Modeling input scale PDFs



Sum rules for proton PDFs Valence 
number sum 
rules

Momentum sum rule



neutron PDFs ?
Isospin 
symmetry



PDF parametrization (workbook setup)

Generic template 
function

Continue to 
Jupyter notebook
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DIS theory



Factorization in deep-inelastic scattering  (DIS)

Internal structure Collision dependent factor

Error of approximations

Approximations
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DIS kinematics

Think them as change 
of variables



DIS factorization

Quark contributions Gluon contributions



DIS in Mellin space
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DIS with Deuteron target

● This approximation ignores the 
“EMC” effect.

● If we ignore the large x_bj data, 
the approximation is ok

Accardi, Brady, Melnitchouk, 
Owens, NS
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World DIS data 
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World DIS data

Jefferson Lab DIS data
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DIS database Continue to 
Jupyter notebook

This class will load the excel files, 
add missing kinematic variables 
and transform the data into numpy 
arrays
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The Loss function
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Anatomy of  Chi2 function 

Theory with pdf 
parameters aExperimental 

data point

Uncorrelated 
uncertainties added in 
quadrature

Point-by-point 
correlated systematic 
uncertainties

Overall 
normalization 
uncertainty 
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Anatomy of  Chi2 function 
Nuisance fitting 
parameter
Nuisance fitting 
parameter

Penalties for the 
Nuisance 
parameters

Penalties for the 
Nuisance 
parameters
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Anatomy of  Chi2 function 

We allow additive and 
multiplicative distortions to 
the theory to match the 
data
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Managing Parameters 

parametrization

Reset boundary 
conditions

Observables

Loss function
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Setting up parameters
Set limits

Define the free 
parameters
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PARMAN -  interface to setup parameters

Check the limits

Updates the PDF 
class

Handle internally 
parameter ordering

Continue to 
Jupyter notebook
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Managing Residuals

parametrization

Reset boundary 
conditions

Observables

Loss function
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RESMAN -  interface to query residuals 
Loads  all the parts that we 
need, including parman

Collect all the 
residuals

Continue to 
Jupyter notebook
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Maximum Likelihood

parametrization

Reset boundary 
conditions

Observables

Loss function
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MAXLIKE -  interface of maximum likelihood 

Loads resman

Continue to 
Jupyter notebook
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Moffat, Melnitchouk, Rogers, NS
arXiv:2101.04664

https://arxiv.org/abs/2101.04664
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Bayesian inference
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The Bayes theorem

Min,  Max, penalties, 
regulators etcThis is a choice 

This is impractical
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How do we deal with the curse of dimensionality ?

Option 1: Maximum likelihood
Asummes symmetric 
likelihood, unique 
solution 

Assumes Gaussian 
behavior around ML
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How do we deal with the curse of dimensionality ?

Option 2: MC approach
Build an MC 
ensemble ($$$)

Many algorithms

- MCMC
- HMC
- Data resampling
- ...
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Data resampling

Original data Replica data

Confidence region

Parameter space

Maximum likelihood

Maximum likelihood

Maximum likelihood

Maximum likelihood
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JAM history

Staff / Faculty

W. Melnitchouk (JLab), T. Rogers (ODU/JLab), 
A. Prokudin (PSU), D. Pitonyak (LVC), L. Gamberg 
(PSU), Z. Kang (UCLA)  J. Qiu (JLab), A. Accardi 
(Hampton/JLab), A. Metz (Temple), C.-R. Ji (NCSU), 
M. Constantinou (Temple), F. Steffens (Bonn),
M. White (Adelaide) , ... 

Students / Postdocs

C. Cocuzza (Temple), Y. Zhou (W&M), P. Barry 
(NCSU), E. Moffat (ODU), J. Bringewatt (UMD), 
J. Ethier (Nikhef), C. Andres (JLab), F. Delcarro 
(JLab), A. Hiller-Blin (JLab), Z. Searle (Adelaide) 
 



JAM’15 (1D spin-PDFs)
Bayesian MC framework

Genuine twist 3 effects
High-x data
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NS, Melnitchouk, Kuhn, Ethier, Accardi



JAM’15 (1D spin-PDFs)

SU(3) constraints:

Role of SIDIS and SIA ?

“...It is demonstrated that the 
polarized strange quark 
density is very sensitive to 
Kaon FF.”
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NS, Melnitchouk, Kuhn, Ethier, Accardi



JAM’16 (1D FFs)

FF kaon: 
JAM closer to DSS at large z
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NS, Ethier, Melnitchouk, Hirai, Kumano



JAM’17 (1D simultaneous extraction of spin PDFs and FFs)

- Use of pol. DIS, SIDIS and SIA
- No SU(2) nor SU(3) constraints
- Empirical evidence of g_3 ~ g_A 2%
- No strange puzzle - need more data

Florian, Sassot, Stratmann, Vogelsang
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Ethier, NS, Melnitchouk



JAM’19 (1D simul. extraction of spin-averaged PDFs and FFs)

Strange suppression disfavored 
by collider W+c data 

SIA (kaon) prefers large 
strange -> Kaon FF

SIDIS (kaon) suppresses strange PDF

Faura, Iranipour,  Nocera, Rojo,Ubiali
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NS, Andres, Melnitchouk



JAM’20 (3D zoo of correlation functions)
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Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, NS



JAM’20 (3D zoo of correlation functions)
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Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, NS



JAM’18 (3D experiment + lattice QCD: gT moment)

Inclusion of gT as Bayesian prior 
can complement experimental data
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Lin, Melnitchouk, Prokudin, NS, Shows



JAM’20 (1D experiment + lattice QCD: quasi-PDFs)
Bringewatt, NS, Melnitchouk, Qiu, Steffens, Constantinou
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Machine Learning



The inverse problem

Forward mapping 

Backward mapping 

DIS

Experimental 
observable

Parametrization d.o.f. 
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An idea: parametrize the inverse function
Parameter spaceObservable space Theory

Neural Nets

...



Parameter inference

Parameter inference

Original data

Trained inverse mapper
...

Uncertainty 
quantification 

Replica data



So why do we need inverse mappers?

...



1) Manipulate data input
What happens 
if we remove 
… data ?

What data are forcing … 
to be …?

Where do we 
need more 
experiments?

Collecting MC samples 
is too expensive

“Global analysis 
is a kind of a 
sausage” …  
how to 
unpack it?



Parameter 
inference

Trained 
inverse 
mapper

Observable 
space

...

Gaussian likelihood

Poisson  likelihood

 Likelihood models

Existing methodologies 
are prohibitively expensive 
for such studies 

...

2) Bayesian inference modeling



Inverse mapper architectures



Designing the inverse mappers 

...

Cross section 1 (x_1,Q2_1) 

x

Q2

Cross section

Cross section 2 (x_2,Q2_2) 

Cross section 3 (x_3,Q2_3) 

...

Kinematics dependent 
inverse mapper

Kinematics-independent 
inverse mapper

Parameter 
inference



Forward Mapper Backward Mapper

Ambiguous

Ambiguity in inverse problems



Kinematic-independent inverse mapper:  
Variational Autoencoder (VAE) 

● Better than previous models
● Remove the grid dependence
● Highly accurate
● No Gaussian mixture 

assumption



Toy problems with multiple solutions

f(x) = x2 f(x, y) = x2+y2

f(x) = sin(x)

f(x) = 0.36 f(x, y) = 1.0

Two Solutions Multiple Finite Solutions Infinite Solutions

f(x) = 0

f(x) = 0.5



Does it work for DIS? 

Validation tests

Inverse 
mapper 

in action!

M. Almaeen et al. (in preparation, 2020)



The workforce of FemtoAnalyzer

QCD Theory

Inverse mappers Web-interface

Raghu

HerambManal
Eleni

Rida

Annabel 
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Summary

parametrization

Reset boundary 
conditions

Observables

Loss function


