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ADb-initio nuclear theory

* Atomic nuclei are strongly interacting many-body systems exhibiting self emerging properties
including: shell structure, pairing and superfluidity, deformation, and clustering.
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» Understanding their structure, reactions, and electroweak properties within a unified framework
well-rooted in quantum chromodynamics has been a long-standing goal of nuclear physics.



From QCD to nuclear observables

In the low-energy regime, quark and gluons are confined within hadrons. The relevant degrees
of freedoms are protons, neutrons, and pions

Effective field theories are the link between quantum chromodynamics and nuclear observables.




A plon-less nuclear Hamiltonian

A prototypal nuclear Hamiltonian can be obtained within pionless effective field theory, where
nucleons interact via two- and three-body contact potentials. At leading order:

Vias = Dy Z UA(T12)UA(7“13)

cyc

V12 = Crop(1r12) + Covp(r12)o12

C1 and C» are determined on nucleon-
nucleon scattering data

The parameter Dy is fixed on the binding
energy of 3H and prevent its collapse

Despite its simplicity, solving this Hamiltonian entails most of the difficulties encountered when
dealing with sophisticated chiral effective field theory potentials;



The nuclear many-body problem

Non relativistic many body theory is aimed at solving the Schrédinger equation
HU,(x1,...,24) = B,V (21,...,24) <€—>» x; ={r;,Si. ti,}
An exact solution of this equation is an exponentially hard problem

W) =cppp [T ) e [T )+ e T )

The majority of quantum states of interest for have distinctive features and intrinsic structure.




Mean-field approximations

* Mean field theory: nucleons are independent  The interaction is usually fitted on nuclear

particles subject to an average nuclear potential binding energies and charge radii of stable nuclei
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* Despite being the tool of choice for describing large nuclei:
* Nucleon-nucleon scattering data and deuteron properties are ignored
* There is no clear way to derive effective currents

* The average procedure depends upon the (large) system of interest



Many-body wave function

Mean field methods assume the ground-state wave function to be a Slater determinant of single-
particle waves functions

(I)O(xlv e 73314) — A[¢n1 (331) o Dy (CEA)]

Extreme “single-particle” representations can be obtained using harmonic oscillator or Wood-Saxon
single-particle potentials
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Many-body wave function

Excited states are constructed removing n occupied states from the Slater determinant and replacing
them with n virtual (unoccupied) states

pni(x1. . wa) = Alpn, (1) -+ p, (T5) - .- Dy (Ta)
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Energy

The eigenstate of the Hamiltonian is a linear combination of n-particles n-holes states

‘\Ijn> - chi,hi‘q)pi,hi> H’\Ijn> — En‘an>



Many-body wave function

Methods relying on single-particle basis expansions include the no-core shell model, the coupled-
cluster theory, the in-medium similarity renormalization group method

Nuclei with up to to A=100 protons and neutrons can be described starting from the individual

interactions among their constituents
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Single-particle basis expansion methods have difficulties in modeling nuclear short-range
dynamics, relevant for electron- and neutrino-nucleus scattering;



Variational Monte Carlo

Variational Monte Carlo uses the stochastic integration method to evaluate the expectation value of
the Hamiltonian for a chosen trial wave function
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Variational Monte Carlo

The variational principle guarantees that the trial energy is greater than or equal to the ground-
state energy with the same quantum numbers

V| H W
By - rlH ) o
(Ur|Pr)

The variational parameters are found minimizing the energy. In the liquid 4He case, where the
wave-function is determined by a single parameters, this amounts to finding b such that

OET
o

Computing the trial energy for a given set of variational parameters requires evaluating a high-
dimensional integral

[dR V% (R)HU(R)

br = [dR % (R)U1(R)

R=rq,...,ry



Multi-dimensional integrals

Goal: compute the D-dimensional integral

by bp
I(D):/ d:cl.../ depF(xy,...,zp)

1 D

In the one-dimensional case, we can divide the area below to the curve into rectangles

Fie) I(1) ~ hZF(xi)
A(1) = h?|F'(z)] + O(h?)
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XN

a X; b T

How many points do we need to achieve a given precision ?
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Multi-dimensional integrals

In the D-dimensional case, the following relations hold:

I(D) ~ hP ZF(:EZ')
A(D) = hPTHVF(x;)| + O(RPT?) =—>» Nx 5
1

hOCW

Suppose we want to compute the expectation value of the Hamiltonian for a 12-particles system
with a precision 0.1

In this case we are dealing with 12 x 3 = 36-dimensional integral

D =36 =——>» N x 10

Clearly, numerical quadrature cannot be used to compute the Hamiltonian expectation values of
many-particle systems



The central Imit theorem

Suppose that the N continuum random variables X1, ..., LN are drawn from the probability
distribution P(x) and consider the function f (). We may define a new random variable

.
SN = N Zf(xz)
i—1

If the samples are statistically independent, the central limit theorem states that the probability
distribution of S is Gaussian
1 (SN_*SN)Q
P(SN) — e N

2
QWON

where the average and the variance of S are given by

Sy = / dzP(z)f(z) oN = \/ % [ / dzP(z)f2(z) — Sn

These results hold true for any dimensionality of the space in which the variable x is defined



The central Imit theorem

The central limit theorem provides a recipe to evaluate multi-dimensional integrals of the form

I:/datf(x)

+ Since the probability density has to be positive definite, rewrite the integral as:

I = /d:vP(a:) £<(Z))

- Sample N (with N “large”) points from the probability density P(x)

- Average the N values of f(z;) and f?(z;)

1 1 & |« g
I:NZf(;vi)i (N 1) N;fz(ﬂfi)(N;f(%))

This method provides an estimate of both the integral and of its uncertainty




Variational Monte Carlo

The expectation value of the Hamiltonian for a system of A particles is given by

g, = (rlH[Yr) [ dR(Ur|R)(RIH V) _ [dR[Yr(R)]*EL(F)
(Wr|[¥r) J dR(¥r|R)(R[¥r) J dR|Y7(R)?

Using the central limit theorem, we can estimate the energy expectation value as

(Er) = 37 X PulRa) +— Eu(R)= 0o
SR, T

Where the walkers are sampled from
_er(B)P?
JdR|Yr(R)|?

P(R)

The integration error can also be readily estimated by

Om. = \/<E512“> - <ET>2 <= <E%> — NL ZE%(RTL)
g N, —1 * Rn



M(RT)2 algorithm

The algorithm was first described in a paper by Metropolis, Rosenbluth, Rosenbluth, Teller and
Teller M(RT)2. It shares common features to the rejection techniques because:

- It involves explicitly proposing a tentative value of the variable we want to sample,
which may be rejected.

- The normalization of the sampled function is irrelevant.

M(RT)2 algorithm has its own advantages and disadvantages:

Pros Cons
* It can be used to sample essentially
any density function regardless of
analytic complexity in any number of

dimensions

- Sampling is correct only asymptotically

- Consecutive variables produced are
often very strongly correlated

It is of very great simplicity.
- Many sampled configurations are

It “embarrassingly parallel” disregarded



M(RT)2 algorithm

Our goal is to sample the probability distribution described by

The M(RT)? algorithm is based on the idea of random walk. A set of random configurations (or
walkers) are generated by applying the transformation.

Transition
4 probability
Piivi(ziy1) = /dxipi(ilfz')T(% — Tiy1)

By recursively applying the same transformation we get

Pn<£Cn) = /d[lfl e dCCn_lpl(Cbl)T(CUl — 5132) . T(CCn_l — CEn)

Under some very general conditions it can be proven that

lim P,(x,)= P(x) =—>» P(x) onlydependson T

n—oo



M(RT)2 algorithm

Let us impose a further condition, i.e. that the asymptotic distribution is an “equilibrium” state:

Plx)T'(x —y)=Py)T(y — z)

The latter is called detailed balance condition, because it does not hold only on average, but it
tells that point by point there is no net flux of probability

We can arbitrarily split the transition probability in two terms

T(r —y) =Gz —y)Alr —y) It tells wether the
It describes the probability of < I [ >  broposed move is
moving the walker fromx — v. gcczpted or rejected

The detailed balance then reads
Aly »z)  P(r)G(r —y)

Alz —y)  Ply)Gly — )

It can be easily checked that the following acceptance probability satisfies the above requirement

P(x)G(x — y))
P(y)G(y — )

A(y — x) = min (1,



M(RT)2 algorithm

A common choice for G(x — y) is a Gaussian distribution centered in zero. In this case, at
each step of the propagations, the walkers are moved by x;1+1 = x; + ¢

In the multiple-particle case, the one dimensional gaussian is replaced by a three-dimensional
gaussian for each particle.

Since the probability of going from x to y is equal to the one of going from vy to x, it turns out that

Glx—y)=Gy—>=x) <<=—>» Ay — z)=min (1, ];gi)



M(RT)2 applied to VMC

At this point, we can describe the Metropolis algorithm for a VMC calculation

Step 0 - Start from an arbitrary distribution of walkers on the coordinate *

Step 1 - Move the walkers according to G(a:z- — yi+1), le. Yir1 =X +¢

(

: Ur(yier)]?
Step 2 - Compute the acceptance probability A(x; — y¥;+1) = min (1 U7 (Yit1)] )

( ()|

Step 3 - Accept or reject the proposed move

U (yit1)]?
U (z:)?

\‘I’T(yiﬂ)\z
(W (z4)]?

> & =P Tiy1 = Yitl

<E =P Ty =T



M(RT)2 applied to VMC

———9 999  The walkers are sampled from an initial distribution

\ Y/
- 00----0---00------- ®  Random Gaussian move
b

_M . = » Acceptance/rejection of the move

»---- » Random Gaussian move

'_.-.—‘—‘— » Acceptance/rejection of the move

e [terate until enough configurations are sampled

U ()]



M(RT)2 applied to VMC

A set of subsequent samplings will be correlated with each other and not correctly reflect the
desired distribution

® To tame this problem, we can pick walkers every “Nvoid” steps, (where Nyoiq is ideally
larger than the correlation time of the chain)

® The correlation time can be reduced by increasing the size of the Gaussian step, but
this will also increase the likelihood of rejecting the proposed move;

® A good choice for the size of the step is such that the acceptance probability is ~ 0.5

It typically takes ~1000 steps for the chain to equilibrate to the desired distribution. These
samples must be disregarded (burn-in time).

Keeping these caveats into account, we now know how to sample our walkers from

W (R)|*

P = T aR[ur ()P




M(RT)2 applied to VMC

Let us recall the trial energy definition:

_ (Up|H|Yyr)  [dR(¥rp|R)(R|H|¥7) [dR|Yr(R)|?EL(R)

M vy T JARUAIR(RIUr) [ dR[Ur(R)P

Using the central limit theorem, we can estimate the energy expectation value as

(Er) = 5 S Eu(R) +—> By (R) = T
S R, T

Where the walkers are sampled from
W (R)

P = Tarlur(R)

The integration error can also be readily estimated by

Ng—1 R,

o \/<E%><ET>2 > <E%>:NLZE§



Energy minimization

The trial wave function depends on a set of variational parameters

Ur) ——» [Yr(p))

It is convenient to introduce the state corresponding to the derivative of the wave function with
respect to the i-th variational parameter

9,

O'|¥r(p)) = o ¥r(p))

Assuming a real trial wave function, the energy derivative reads

OBr _ , [{Ur|HOWr)  (Up|H|Vr) (V7|0 |Vr)

Opi (Ur|Ur) (Ur|Ur)  (Yr|¥r)
= (ErO") — (Er)(O")

The variational parameters can be updated in the spirit of the stochastic gradient descent as

OF
R e
Op;

—» T ~0.001



The quantum Harmonic Oscillator

Let us consider the prototypal problem of a collection of A independent (decoupled) quantum
Harmonic oscillators, in N dimensions

1 A A 1'2
H==5) Vit) 5

1=1 1=1

We assume a trial wave function of the form

A
U(R) = exp (aZr?)

So that the exact ground-state wave function is recovered for av = 1/2

1 1
\IJO( eXp( 521’3) <4+ E():AXNX§
1=1



The quantum Harmonic Oscillator

The local energy is the sum of the kinetic and potential contributions

RIH\W R|T|\W R\V W

g, (r) — (BHYT) _(RIT|Wr) (RIV]¥7)
(R[¥T) (R[¥r) (R[W¥r)
The kinetic energy involves the second derivative of the trial wave function
A A A

1 V2\I!T(R) 1 2.2 2.2

T = —— - = —— —2aN +4 Y = N — 2 :
L (R) 2; Tr(R) 2;( aN + 4a°r;) ;(a a’ry)

The potential energy is more immediate to evaluate

VL(R) =

A
2
r;

DY | —

i=1
Question: What happens for a = 1/2 ?

1
EL(R):§><A><N



