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Quick recap

We consider a non relativistic Hamiltonian of the kind

Variational Monte Carlo approximately solves the many-body Schrédinger equation assuming a
given form of the trial wave function
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The energy expectation value can be estimated using the central limit theorem
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Where the configurations (walkers) are sampled from

_ W7 (R)|
[ dR|Y 7 (R)|?

P(R)



Quick recap

* We use the M(RT)A2 algorithm to sample walkers from the distribution
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* The walkers are sampled from an initial distribution

e Random Gaussian move
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» Accept/reject the move according to
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e [terate until enough configurations are sampled



Quick recap

» Since we use the M(RT)A2 algorithm, some of the configurations that we generate must be
disregarded

The initial configurations are disregarded while
we wait for the Markov chain to equilibrate
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The quantum Harmonic Oscillator

Let us consider the prototypal problem of a collection of A independent (decoupled) quantum
Harmonic oscillators, in N dimensions
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We assume a trial wave function of the form

A
U(R) = exp (aZr?)

So that the exact ground-state wave function is recovered for av = 1/2
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The quantum Harmonic Oscillator

The local energy is the sum of the kinetic and potential contributions
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The kinetic energy involves the second derivative of the trial wave function
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The potential energy is more immediate to evaluate
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Question: What happens for a = 1/2 ?
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HO notebook

https://github.com/coreyjadams/Al4NP_School/blob/main/HO_analytic_derivatives.ipynb


https://github.com/coreyjadams/AI4NP_School/blob/main/HO_analytic_derivatives.ipynb

Neural-network quantum states

* Artificial neural networks (ANNs) can compactly represent complex high-dimensional functions;

 Variational representations of spin-systems quantum
states based on ANNs have been found to outperform
conventional variational ansatz;

G. Carleo et al. Science 355, 602 (2017)

G. Carleo et al. Nat. Commun. 9, 532 (2018)

* Applications to the continuum to few-body systems and quantum chemistry problems have

followed shortly thereafter;
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H. Saito, J. Phys. Soc. Jpn. 87, 074002 (2018)

Pfau et al., arXiv:1909.02487 (2019)
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Hermann et al., arXiv:1909.08423 (2019)
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Neural-network quantum states

 In our examples, we will solve the quantum harmonic oscillator and the hydrogen atom using an
ANN representation of the wave function
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» The center of mass contributions to the kinetic energy are removed by Ti = I'; — Rcwm

* The kinetic energy requires computing the derivatives of (/. We use differentiable activation functions,
typically sofplus or tanh.



Energy minimization

Minimizing the energy corresponds to training the neural network. Let us recall the derivative of
the energy
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A Metropolis walk correspond to a “batch” of walkers, and the SGD update reads
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The SGD and its variant (ADAM, RMSprop, momentum...) are greatly successful in training
neural networks, but exhibit slow convergence in quantum Monte Carlo applications;

Ultimately, the reason is that sometimes a small change of the variational parameters
correspond to a large change of the wave function;



Stochastic reconfiguration

We perform an imaginary-time diffusion in the space spanned by the trial wave function and its
derivatives
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Solving the first line for Apo and inserting back in the second line, we arrive at
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S. Sorella, Phys. Rev. B 71, 241103 (2005)




Stochastic reconfiguration

The stochastic reconfiguration update rule is then given by
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The SGD is recovered for diagonal Sz'j, but in general this matrix is not diagonal. This method is
a close relative to the “natural gradient approach”.

Natural Gradient: Riemannian distance in
the space of distributions
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S. I. Amari, Neural Computation 10, 251 (1998).

Simple Gradient: Euclidean distance
in the space of parameters
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Effectively, the stochastic reconfiguration method “flattens” the space locally and can be
considered a 2nd order approach.

Caveat: storing the matrix S@'j can be memory consuming for large networks, but the conjugate-
gradient method largely overcomes this limitation



