

CLAS12 Kaon Detection with RICH

Marco Mirazita – INFN Frascati

1

CLAS Collaboration meeting – November 10-13, 2020

Kaon ID in CLAS12

Relative yield production require ~4 σ pion-kaon separation and ~3 σ proton-kaon separation

High threshold Cherenkov

The RICH design

Hybrid design with proximity and mirror focusing imaging

- 1. Aerogel to match the momentum range
- 2. Photomultipliers to detect visible photons
- 3. Mirrors to reduce the detection area
- 102 aerogel tiles in three layers
- 391 MAPMTs with 25024 independent readout channels
- 7 planar mirrors
- 10 spherical mirrors

RICH reconstruction

Goals:

- 1. estimate the Cherenkov angle for all the hits in the MAPMT plane
 - → Ray tracing of Cherenkov photons inside the RICH, based on:
 - the geometry of the detector
 - the charged particle trajectory from CLAS12
- 2. perform the particle ID of each charged track in the detector (likelihood approach)
 - prior knowledge of the refractive index

RICH cooked data

An effort has been done in 2019 in order to have the RICH ready for the pass1 massive cooking of RG-A and RG-B data

- implementation and updates of the RICH reconstruction in coatjava
- revision of the reconstruction banks
- completion of the time calibration suite
- alignment of the RICH module with respect to CLAS12
- relative alignment between the aerogel radiator and the MAPMT plane

Time calibration results

Alignment of the measured time to the one provided by CLAS12:

$$\Delta T = T_{meas,corr} - T_{start} - T_{rec}$$

- 25024 time offsets
- 391 time walk functions (4 parameters each)
- goal: time resolution < 1 ns</p>

https://github.com/JeffersonLab/clas12calibration-rich

<u>RICH alignment with respect to CLAS12</u>

- Alignment of the RICH module with respect to CLAS12 comparing the projection of the DC trajectory to the RICH MAPMT plane and the position of the track cluster
- Relative alignment between the aerogel and the MAPMT

RICH performance using e-: Number of p.e. per track N. photons per track, Map per tile

___2

Mapping the aerogel tile

Direct photons Electrons

<u>Alignment refinement</u>

The precise alignment of the RICH internal element must follow a step by step procedure:

- 1. position of the aerogel planes: two rotation angle, one offset
 - relative angular distance between electrons and hadrons
 - inbending vs outbending data
- 2. tuning of the aerogel refractive index
 - electrons in CLAS12
- 3. alignment of each mirror: two rotation angles, one offset per mirror
 - direct vs reflected photons

Studies for RG-A inbending, pass1 cooking will be shown

Distance between aerogel and MAPMT plane

Reflected topologies: Planar mirrors

Data analyzed per tile and per mirror

- Clear signal in all the tile-mirror combination
- Resolution similar to the direct photons
- > The shift in the peak position due to misalignment

Reflected topologies: spherical mirrors

Alignment survey: planar mirror A1L

One tile and one lateral mirror

3 alignment parameters

Alignment procedure: minimization algorithm

- Two alignment angles θx , θy
- One position shift Δz
- Quality parameter

$$\chi^{2} = \sum_{j=1}^{N_{AERO}} \sum_{i=1}^{N_{PHO}} \frac{(\boldsymbol{\theta}_{i,j}^{REF} - \boldsymbol{\theta}_{i,j}^{MEAS})^{2}}{\left(\boldsymbol{\sigma}_{i,j}^{REF}\right)^{2}}$$

• 3D scan, minimize $\Delta \chi^2 = \chi^2 - \chi^2_{min}$ in each 1D slice

RICH PID studies: RG-A pass1 data

- > The available RG-A (and RG-B) pass1 data allows preliminary PID studies with the RICH
 - only direct photons
 - \rightarrow limited angular coverage, reduced number of p.e.
- Relative hadron production
 - Select all hadrons with a given charge
 - Estimate events in the RICH Cherenkov angle peaks
 - \rightarrow tuning of the k/pi ratio in CLASdis
- Particle contamination
 - Select one particle species from CLAS12 EB
 - Look at the RICH response
 - \rightarrow only upper limits at present, comparison with SIDIS analysis s

K/pi relative yield extraction

- 1. Select DIS inclusive e h X final state with EB
- 2. Look at the RICH Cherenkov angle for the hadron in the RICH
- Fit with the sum of two Gaussians with the same σ f(θ) = Gaus_{π} (N_{π}, θ_{π} , σ) + Gaus_K (N_K, θ_{K} , σ)
- Production rate:

 $R(K/\pi) = N_{\pi} / N_{K}$

Inbending data

K/pi production yield

blue: RICH inbending red: RICH outbending green: Wiser fits

positive hadrons

Electron ID contamination

- 1. Select DIS inclusive e X final state with EB
- 2. Look at the RICH Cherenkov angle for the electron in the RICH

Track $\theta_{\rm C}$ vs Momentum, Layer 0, Tile 12

Inbending data

- Contamination estimate is possible only for p < 1.4 GeV/c
- > The momentum range of sensitivity could be slightly extended with better alignment (i.e. more photons)
- **Too low momenta for SIDIS kinematics**

Pion ID contamination

- 1. Select DIS inclusive e pi X final state with EB
- 2. Look at the RICH Cherenkov angle for the pion in the RICH
 - Fit with the pion peak with a Gaussian
- Count the number of events out from the peak+/-3sigma region (pink lines)

0.3038

Contamination:

$$C = \frac{N(\theta < \theta_{min}) + N(\theta > \theta_{max})}{N_{tot}}$$

\rightarrow the present estimate can be considered only an upper limit

Pi+ contamination vs theta at fixed P

blue: RICH inbending red: RICH outbending

K+ and proton ID contaminations

 $\theta \sim 9 \deg$

- 1. Contamination to K+ is large, around 50% already at 3 GeV/c
- 2. Contamination to p is also significant
 - ightarrow cross check with TOF resolution vs angles

Summary and outlook

- **1.** The present RICH reconstruction relies only on the direct photons
 - limited angular coverage and number of p.e.
 - results presently affected by asymmetric Cherenkov angle distribution shape due to misalignments
- 2. Preliminary PID studies have been started using the RG-A pass1 data to provide feedbacks for the first publications
 - estimate of the K/pi production ratio, tuning of the clasDIS event generator
 - upper limit on the contamination in the pi+ ID around 10%
 - indication of high contamination in the Kaon ID already around 3 GeV/c
 - need completion of the alignment to get more precise estimations
- Tools to extract the alignment parameters of the RICH internal elements have been developed
- The tools have been tested using the RG-A pass1 cooking data
- We are now ready to start the alignment process in a systematic way
 - reprocessing of the RICH data will be necessary

ightarrow The goal is to complete the task by the end of the year, in time for the pass2 cooking

backup

RICH performance with e-: Single photon resolution

Inbending vs outbending electrons

- Same relative color pattern from inbending to outbending data
- shift of the mean angle from in- to out-bending due to wrong gap length

Kaon production rate: data vs MC

Kaon Production rate scaled by 0.4 in the latest Monte Carlo generation

Ratio vs angles (Q>0)

• Inbending data

Variations among tiles with similar kinematics, most likely due to:

- distortion in the signal shape
- different fractions of direct photons

Kaon ID with CLAS12

Time of flight

• arrival time difference

High threshold Cherenkov counter

pion inefficiency with <Npe>=12

Kaon ID contaminations

