M	otiv	ati	ons
0	00		

TCS analysis 0000000000000000 TCS results 0000000000

Nucleon Structure Studies with CLAS12 at Jefferson Lab: Timelike Compton Scattering

13 November 2020

Pierre Chatagnon for the ee analysis group

November 2020 CLAS collaboration meeting

chatagnon@ipno.in2p3.fr

Experimental setu

TCS analysis 0000000000000000 TCS results 0000000000

From DVCS to TCS

DVCS: $ep \rightarrow e'p'\gamma$

TCS:
$$\gamma p \rightarrow e^+ e^- p$$

TCS process

In the Bjorken regime ($Q'^2 \gg t$) factorization applies. The real photon scatters off a single quark.

The soft part is parametrized by $\ensuremath{\textbf{GPDs}}$, which appears in integrals called $\ensuremath{\textbf{CFFs}}$.

DVCS: $\gamma^* p \rightarrow \gamma p'$ **TCS**: $\gamma p \rightarrow \gamma^* p'$

Compton Form Factors

$$\mathcal{H} = \sum_{q} e_q^2 \{ i\pi \left[H^q(\xi,\xi,t) - H^q(-\xi,\xi,t) \right] + e^{1}$$

$$\mathcal{P}\int_{-1}^{1}dxH^{q}(x,\xi,t)\left[rac{1}{\xi-x}-rac{1}{\xi+x}
ight]\}$$

 $\gamma p
ightarrow e^+ e^- p'$ cross section

$$\sigma_{\gamma p \to e^+ e^- p} = \sigma_{TCS} + \sigma_{BH} + \sigma_{INT}$$

The TCS-only cross section is orders of magnitude lower than the $\ensuremath{\mathsf{BH}}$ one.

The contribution from **BH-TCS interference** is also sensitive to CFFs (in a linear manner).

$$\frac{d\sigma_{BH}}{dQ^2 dt \, d\Omega} \simeq \frac{\alpha_{em}^3}{2\pi s^2} \frac{1}{-t} \frac{1+\cos^2\theta}{\sin^2\theta} \left[\left(F_1^2 - \frac{t}{4m_p^2} F_2^2 \right) \frac{2}{\tau^2} \frac{\Delta_T^2}{-t} + \left(F_1 + F_2 \right)^2 \right]$$

Unpolarized interference cross section

$$\frac{d^4\sigma_{INT}}{dQ'^2 dt d\Omega} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_\rho}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \left[\cos(\phi) \frac{1+\cos^2(\theta)}{\sin(\theta)} \operatorname{Re}\tilde{M}^{--} + \dots \right]$$
$$\rightarrow \tilde{M}^{--} = \frac{2\sqrt{t_0-t}}{M} \frac{1-\xi}{1+\xi} \left[F_1 \mathcal{H} - \xi(F_1+F_2)\tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]$$

$$\frac{d^{4}\sigma_{INT}}{dQ^{\prime 2}dtd\Omega} = \frac{d^{4}\sigma_{INT}\mid_{\text{unpol.}}}{dQ^{\prime 2}dtd\Omega}$$
$$-\nu\frac{\alpha_{em}^{3}}{4\pi s^{2}} \frac{1}{-t} \frac{M}{Q^{\prime}} \frac{1}{\tau\sqrt{1-\tau}} \frac{L_{0}}{L} \left[\sin(\phi)\frac{1+\cos^{2}(\theta)}{\sin(\theta)} \operatorname{Im}\tilde{M}^{--} + ... \right]$$
$$\rightarrow \tilde{M}^{--} = \frac{2\sqrt{t_{0}-t}}{M} \frac{1-\xi}{1+\xi} \left[F_{1}\mathcal{H} - \xi(F_{1}+F_{2})\tilde{\mathcal{H}} - \frac{t}{4M^{2}}F_{2}\mathcal{E} \right]$$

Both $Im \mathcal{H}$ and $Re \mathcal{H}$ can be accessed in TCS

TCS analysis 000000000000000000 TCS results 0000000000

Motivations to measure TCS

Test of universality of GPDs

- TCS is parametrized by GPDs
- Comparison between DVCS and TCS results allows to test the universality of GPDs
- $\bullet~$ TCS does not involve Distribution Amplitudes unlike Deeply Virtual Meson Production \rightarrow direct comparison between DVCS and TCS

Real part of CFFs and nucleon D-term

- \bullet As for DVCS, TCS unpolarized cross section is sensitive to ${\rm Re}{\cal H},$ which is still not well constrained by existing data.
- The CFFs dispersion relation at leading order and leading twist :

$$\operatorname{Re}\mathcal{H}(\xi,t) = \mathcal{P}\int_{-1}^{1} dx \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right) \operatorname{Im}\mathcal{H}(\xi,t) + D(t)$$

• D(t) can be related to the mechanical properties of the nucleon.

Review in Polyakov, Schweitzer, International Journal of Modern Physics A, 2018

TCS analysis 00000000000000000 TCS results 0000000000

Experimental setup and data set

Usual RG-A configuration of CLAS12

Figure in Burkert et al., NIM A, 2020

Data set used in this work

• Fall 2018 run period

- Inbending torus magnetic field
- LH₂ target / 10.6 GeV beam / RG-A • Accumulated charge: ~ 150 mC (~ 200 fb⁻¹) Difficulties to combine with other data sets: \neq beam energy, outbending (\neq angular range)

Other TCS experiments

- CLAS12: first time measurement in the resonnance free region
- Hall C: proposal for TCS on tranversely polarized target
- Solid: long-term project

Experimental setup

TCS results 0000000000

Strategy of the analysis

Simulations

- $\gamma p \rightarrow e^+ e^- p'$ weighted event generator, developed by R.Paremuzyan, validated during my thesis
- Final state particles are passed through GEMC

TCS analysis

TCS results 0000000000

Particle identification

Hadrons (for protons)

- Tracking: *p* from curvature in the magnetic field
- Time-of-flight: *t*tof

•
$$\beta = \frac{P_L}{t_{tof}}$$

 \rightarrow Use nominal EB cuts (χ^2 cut included in systematics)

Leptons (for electrons and positrons)

Calorimeters:
$$SF = \frac{E_{dep}}{p}$$

Cherenkov: $p_{Ch.} = \frac{mc}{\sqrt{n^2-1}}$ if p<4.9 GeV, $N_{PHE}(HTCC) > 2$

TCS analysis

TCS results 0000000000

Positron identification (2)

Neural network analysis Simu. Variables Data Validation Training Testing Comparison Normalized number of events 0.8 ECOUT : 0.6 m2PCAL: 0.4 No cut SF cut Fisher m2ECIN: BDT MIP 0.2 BDT (6D) m2ECOUT : MLP (6D) Chi2 (Symmetric cut) Chi2 (Asymmetric cut) 0.2 0.4 0.6 0.8 Normalized BackGround Strength Output layer • Signal + Background $\Rightarrow \gamma p \rightarrow e^+ e^- p'$ Signal $\rightarrow 1$ Background $\rightarrow 0$ • Background $\Rightarrow ep \rightarrow e\pi^+(n)$

TCS analysis

TCS results 0000000000

Proton Momentum Corrections: MC corrections

Momentum correction is parameterized as a function of P and corrected in simulation and data.

Proton Momentum Corrections: Central corrections (1)

Missing proton mass spectrum; as a function of the missing particle θ angle.

- Aims at correcting the momentum reconstruction in the CVT.
- Use $ep \rightarrow e(p')\pi^+\pi^-$ reaction, where the missing proton goes in the CD. Missing proton kinematics are compared to reconstructed ones.
- At $\theta > 37^{\circ}$, there is very low background \rightarrow clean one-to-one matching

TCS analysis

TCS results 0000000000

Proton Momentum Corrections: Central corrections (2)

• No large shift seen in the θ and momentum dependence

 $\Delta P/P$ versus heta and momentum for proton in the CD

 $\Delta P/P \text{ versus } \phi_{CVT} \text{ for the} \\ \text{three sectors of the CVT,} \\ \text{and the last layer (id 12) of} \\ \text{the CVT} \\ \end{cases}$

- Correction applied for each of the three regions, only for data.
- $\frac{\Delta P}{P}$ is parametrized as a function of the local ϕ angle of the last layer of the CVT

Lepton Momentum Corrections: photon corrections at the vertex

At the vertex, some photons are produced very close to leptons. γ momenta is added to the lepton momentum within $-1.5^{\circ} < \Delta\theta < 1.5^{\circ}$ and *Cone angle* $< 10^{\circ}$. Applied in both simulation and data. Full details were given in Joseph's talk yesterday.

Experimental setup

TCS analysis

TCS results 0000000000

Lepton pair mass spectrum

Vector mesons peaks are visible: ω (770 MeV), ρ (782 MeV), Φ (1020 MeV) and J/Ψ (3096 MeV)

Experimental setup

TCS analysis

TCS results 0000000000

Data/Simulation comparison

- 1.5 GeV < $M_{e^+e^-} = \sqrt{Q'^2} < 3 \ {\rm GeV}$
- 0.15 $\text{GeV}^2 < -t < 0.8 \text{ GeV}^2$
- 4 GeV $< E_{\gamma} < 10.6$ GeV.

- Data/BH comparison in the high mass region
- No evident high mass vector meson production (ρ (1450 MeV, 1700 MeV))

Experimental se

TCS analysis

TCS results 0000000000

Kinematics

Experimental setup

TCS analysis

TCS results 00000000000

Analysis cross-check (in progress)

Cross-check using the parallel analysis of J. Newton on J/Ψ . Different cuts are used:

- Different method for positron ID
- HTCC timing cut to reduces low-mass BG
- Different fiducial cuts

Slight discrepancy is being investigated.

Motivat	ion
000	

TCS analysis

Acceptance

$$Acc_{\mathcal{B}} = \frac{N_{\mathcal{B}}^{REC}}{N_{\mathcal{B}}^{GEN}} \qquad \qquad N_{\mathcal{B}}^{REC} = \sum_{REC \in \mathcal{B}} \frac{Eff_{corr}}{w} \qquad \qquad N_{\mathcal{B}}^{GEN} = \sum_{GEN \in \mathcal{B}} w$$

Multidimensional binning of the acceptance

4 bins in -t, 3 bins in E_{γ} and $Q^{\prime 2}$, $10^{\circ} \times 10^{\circ}$ bins in the ϕ/θ plane. Bins with $\frac{\Delta Acc}{Acc} > 0.5$ and Acc < 0.05 are discarded (ΔAcc is statistical error).

Large region with no acceptance $(\phi\sim0^\circ/\theta\sim180^\circ$ and $\phi\sim180^\circ/\theta\sim0^\circ)$

Currently used Efficiency correction from background merging using random trigger events Being validated Data-driven correction for the proton detection efficiency derived using $ep \rightarrow e'\pi^+\pi^-(p')$ reaction

Data driven proton efficiency correction (validation in progress)

Use $ep \rightarrow ep'\rho \rightarrow e(p')\pi^+\pi^-$ reaction (data or *genev* simulation), using kinematic variables of the missing proton.

In the CD

- In the CD: 4 bins in momentum, 2 bins in $\theta,$ 30 in ϕ
- In the FD: 1-dimension correction: 9 bins in momentum
- Ultimately, this correction will be included in the systematics.
- This correction is included in my thesis work, but need a final validation.

TCS analysis 00000000000000000

Timelike Compton Scattering with CLAS12

Results

Experimental setup

FCS analysis DOOOOOOOOOOOOOO TCS results

Observable 1: Photon polarization asymmetry (BSA)

Access to the imaginary part of CFFs

$$BSA = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{-\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_P}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_0}{L} \sin \phi \frac{(1+\cos^2\theta)}{\sin(\theta)} \operatorname{Im} \tilde{M}^{--}}{d\sigma_{BH}}$$

Experimental measurement

•
$$BSA(-t, E\gamma, M; \phi) = \frac{1}{Pol_{eff}} \frac{N^+ - N^-}{N^+ + N^-}$$

where $N^{\pm} = \sum \frac{1}{Acc} Pol_{transf.}$

- Pol_{transf.} is the transferred polarization from the electron to the photon
- Pol_{eff} is the polarization of the CEBAF electron beam (≃ 85%)
- The ϕ -distribution is fitted with a sine function

Experimental setup

FCS analysis DOOOOOOOOOOOOOO TCS results

Observable 1: Photon polarization asymmetry (BSA)

Access to the imaginary part of CFFs

$$BSA = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{-\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_P}{Q'}}{\frac{1}{\tau \sqrt{1-\tau}} \frac{L_0}{L} \sin \phi} \frac{(1 + \cos^2 \theta)}{\sin(\theta)} \operatorname{Im} \tilde{M}^{--}}{d\sigma_{BH}}$$

Experimental measurement

- $BSA(-t, E\gamma, M; \phi) = \frac{1}{Pol_{eff}} \frac{N^+ N^-}{N^+ + N^-}$ where $N^{\pm} = \sum \frac{1}{Acc} Pol_{transf.}$
- Pol_{transf.} is the transferred polarization from the electron to the photon
- Pol_{eff} is the polarization of the CEBAF electron beam (≃ 85%)
- The $\phi\text{-distribution}$ is fitted with a sine function

Systematics

• Calculate observable in CLAS12 acceptance for generated BH events, and full-chain simulated events.

χ^2 proton

Calculate observable without cut on the proton ID χ^2 or with a 3- σ cut

Positron Identification

• Vary the positron ID cut (0.5 ± 0.1)

Efficiency

With BG merging or with proton efficiency

Exclusivity cuts

• Vary the values of the exclusivity cuts: $0.04 < Pt/P < 0.05, 0.3 \ {
m GeV}^2 < M_V^2 < 0.4 \ {
m GeV}^2$ Dominant systematic uncertainty

Acceptance

- Calculate observable with acceptance produced using BH-weighted events or flat weights (equal to 1)
- Errors are added in guadrature for each bin
- Total syst. always smaller than stat. error

Experimental setu

TCS analysis 0000000000000000 TCS results

Results for the BSA

- First time measurement
- A sizeable asymmetry is measured (above the expected vanishing BSA of BH) → signature of TCS
- Experimental BSA measured in CLAS12 acceptance compared to model predictions integrated in $\theta \in [\pi/4, 3\pi/4]$, and evaluated at the BH mean kinematic point shown above each plot
- Theoretical predictions were provided by M.Vanderhaeghen (using the VGG model) and P.Sznajder (using the GK model)
- Size of the asymmetry is well reproduced by VGG and GK models

\rightarrow model dependent hints for universality of GPDs

• Mass-dependence is also consistent with the prediction of the GK model

Potentially publishable plots

Experimental setup

TCS analysis 0000000000000000 TCS results

Observable 2: cross-section ratio *R*

Weighted cross section ratio (Berger, Diehl, Pire (2002))

$$R(\sqrt{s},Q'^2,t) = \frac{\int_0^{2\pi} d\phi \, \cos\phi \frac{dS}{dQ'^2 dtd\phi}}{\int_0^{2\pi} d\phi \frac{dS}{dQ'^2 dtd\phi}} \qquad \frac{dS}{dQ'^2 dtd\phi} = \int_{\pi/4}^{3\pi/4} d\theta \frac{L}{L_0} \frac{d\sigma}{dQ'^2 dtd\phi d\theta}$$

Experimental measurement

$$R' = rac{\sum_{\phi} Y_{\phi} \cdot cos(\phi)}{\sum_{\phi} Y_{\phi}}$$

$$Y_{\phi} = \sum_{\theta \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]} \frac{L}{L_0} \frac{1}{Acc}$$

The sum is restricted to CLAS12 acceptance, inducing false asymmetries \rightarrow comparison with models is difficult. Nevertheless, a clear signal is visible above the BH contribution

Experimental setup	TCS analysis
0	00000000000000

TCS results

Observable 3: Forward-Backward asymmetry

• Concept explored for J/Ψ production (Gryniuk, Vanderhaeghen, *Phys. Rev. D*, 2016), no predictions for TCS have been published yet

• Use the different parity of the TCS and BH amplitudes under the inversion of the leptons $k \leftrightarrow k' \iff (\theta, \phi) \leftrightarrow (180^{\circ} - \theta, 180^{\circ} + \phi)$

- Access to the real part of the CFFs with no integration over angles
- ${\ensuremath{\, \bullet }}$ Removes large dependencies on angular acceptance \rightarrow direct comparison with models
- $\bullet \ \ \mathsf{But \ smaller \ phase \ space} \to \mathsf{lower \ statistics}$

Experimental setup

TCS analysis

TCS results

A_{FB} phenomenology

• Kinematic dependencies were studied in order to determine the best integration range for the measurement

Experimental forward angular range

 $\phi \in [-40^{\circ}, 40^{\circ}], \ \theta \in [50^{\circ}, 80^{\circ}]$

• The D-term has a large effect on the asymmetry

Experimental setup

TCS analysis 0000000000000000 TCS results

A_{FB} measurement

- Forward direction: Integration range \mathcal{I}_F , $\phi \in [-40^\circ, 40^\circ]$ and $\theta \in [50^\circ, 80^\circ]$.
- Backward direction: Integration range $\mathcal{I}_{\mathcal{B}}$, $\phi < -140^{\circ}$ or $\phi > 140^{\circ}$ and $\theta \in [100^{\circ}, 130^{\circ}]$.

Bin Volume correction

- Some $E_{\gamma}/Q'^2/t$ acceptance bins do not cover the whole integration range.
- Correction to take into account the "hole" in acceptance.
- The volume covered by the acceptance Vol_{Acc} in the forward and backward directions are calculated.
- Correction factors are given by: $Vol_{corr} = Vol_{Acc} / Vol_{I}$.
- 2 sets of volume correction factors, for each $E_{\gamma}/Q'^2/t$ acceptance bin.

•
$$A_{FB} = \frac{N_F - N_B}{N_F + N_B}$$
 $N_{F/B} = \sum \frac{1}{Acc \times CorrVol_{F/B}}$

• Error bars given by propagating $\delta\sigma\propto\sqrt{\sum(1/\mathit{Acc}\cdot\mathit{Vol_{corr}})^2}$

Experimental set

TCS analysis 0000000000000000 TCS results

A_{FB} (selected results)

- A_{FB} measured in two mass regions: $M \in [1.5 \text{ GeV}, 3 \text{ GeV}]$ and $M \in [2 \text{ GeV}, 3 \text{ GeV}]$ (known resonance-free region)
- The measured *A_{FB}* is non-zero: evidence for signal beyond pure BH contribution
- Three model predictions
 - 1 VGG without D-term
 - 2 VGG with D-term

D-term in Pasquini et al., Physics Letters B, 2014

- 3 GK/LO without D-term
- Measured asymmetry is better reproduced by the VGG model including the D-term in both mass bins
- $\bullet~$ Large error bars \rightarrow upcoming CLAS12 data will allow deeper insight on TCS

Potentially publishable plots

Paper take aways and near future plans

This analysis includes:

- A new positron identification procedure based on neural networks
- MC and data-driven momentum correction
- A complete acceptance study
- A phenomenological study of the TCS AFB using the VGG model
- The measurement of three observables: BSA, R ratio and AFB
- The evaluation of systematic uncertainties on the measurements

The physic message we want to convey:

- TCS/BH observables were measured for the **first time**. Sizeable BSA and *A_{FB}* are **clear signatures of TCS**
- The results obtained allow to draw physical conclusions:
 - $\bullet\,$ the BSA is well reproduced by models that reproduce existing DVCS data $\to\,$ hints for universality of GPDs
 - the Forward/Backward asymmetry appears to be sensitive to the D-term
 - \rightarrow promising path to the measurement of the mechanical properties of the proton

The path toward publication

- Analysis note written and submitted to review (30th September 2020)
- Cross-check well under way
- Final systematic checks and validation of the efficiency corrections (almost) done
- Writting of the article to start in December (PRL)

Experimental set

TCS analysis 0000000000000000 TCS results

Many thanks to the CLAS collaboration !