

Exclusive Phi Production Beam Spin Asymmetry Measurements with CLAS12 CLAS12 Fall Collaboration Meeting

Brandon Clary, Ph.D.

University of Connecticut

November 13th, 2020 Newport News, VA

Outline			
•			

Outline

- Physics Motivation
- Experimental Setup
- Data Analysis
- Conclusion

Physics Motivation

- Generalized parton distributions (GPDs) for 3-D structure of nucleon
 - longitudinal momentum distributions and transverse spatial distributions of quark and gluons.
- Efforts to explore quark structure, but little is known about the gluonic structure.

Mechanisms of Confinement

The mechanism of confinement - the phenomenon that there are no free quarks existing in nature - has been an ongoing research endeavor since the inception of QCD. Candidate mechanisms

include

 formation of gluon flux tube between quarks

Flux tube formed between two quarks (red and blue spheres), vacuum is suppressed. [1]

Mechanisms of Confinement

The mechanism of confinement - the phenomenon that there are no free quarks existing in nature - has been an ongoing research endeavor since the inception of QCD.

Candidate mechanisms

include

- formation of gluon flux tube between quarks
- the QCD vacuum screening against the propagation of free quarks

Quarks (spheres) located on instanton fluctuation, being probed by photon (white curve line) [1]

Physics Motivation

- Access gluonic GPDs
 - $\phi \ (s\bar{s})$ $J/\psi \ (c\bar{c})$
- At JLAB 12 GeV kinematics
 - J/ψ can only be accessed at threshold relatively large t_{min}
 φ production can be measured at low t ≪ 1 GeV² where GPD formalism is relevant.

Exclusive ϕ Production $(ep \rightarrow e'p'\phi(1020) \rightarrow e'p'K^+K^-)$ Here the angle, Φ , is the angle between the lepton and hadron plane which is defined by the electron and proton, respectively.

Differential Cross Section $(ep \rightarrow e'p'\phi)$

Differential cross section for $ep \rightarrow e'p'\phi$ for an unpolarized proton with polarized electron beam can be written in the form

$$\frac{d^{4}\sigma}{dQ^{2}dx_{B}dtd\phi} = \Gamma(Q^{2}, x_{B}, E)$$

$$\frac{1}{2\pi} \left\{ \frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} + \epsilon \frac{d\sigma_{TT}}{dt} \cos(2\phi) + \sqrt{\epsilon(2\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos(\phi) + \left(\overline{\lambda}\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{LT'}}{dt} \sin(\phi)\right) \right\}$$
(1)

 λ is the helicity state of the incident electron beam (±1).

OutlinePhysics MotivationExperimental SetupData AnalysisConclusionReferences00000000000000000000000

Measuring the beam spin asymmetry is the main focus of this work.

The beam spin asymmetry (BSA) is defined as

$$BSA = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}} \leftarrow \text{Measurable!}$$
$$BSA = \frac{\boxed{A_{LU}^{sin(\phi)}}sin(\phi)}{1 + A_{UU}^{cos(\phi)}cos(\phi) + A_{UU}^{cos(2\phi)}cos(2\phi)}$$

Effort is focused on determining $A_{LU}^{sin(\phi)} \sim \sigma_{LT'}$

• Extracting A_{LU} provides access to parton helicity flip (H_T, E_T) and helicity *non*-flip GPDs (H, E)... $A_{IU}^{sin(\phi)} \sim \Im \mathfrak{m} (H_T E - E_T H)$

CLAS12 is uniquely designed to provide coverage over a wide kinematic range for charged and neutral particles

- 10.6 GeV Beam @ 50nA
- Unpolarized LH2 target
- Polarized Beam

- \blacksquare Torus Field $\pm 100\%$
- Solenoid Field -100%
- NIM paper [2]

	Experimental Setup		
0	00		

Outline

- Physics Motivation
- Experimental Setup
- Data Analysis
- Results

Focus on the data analysis for $ep \to e'p'\phi$ through $e'p'K^+K^-$

- Analyze ${\sim}20\%$ of available data
- Electron ID
- Hadron ID
- Event selection $ep \rightarrow e'p'\phi$
- Beam Spin Asymmetry Extraction

OutlinePhysics MotivationExperimental SetupData AnalysisConclusionReferences0000000000000000000000

Electron ID requires multiple cuts to select a clean sample of events

- Sampling fraction cut
- Minimum energy deposited in calorimeter
- Number of photoelectrons produced in Cherenkov counters
- Preshower calorimeter and drift chamber fiducial cuts

Electron ID requires multiple cuts to select a clean sample of events

OutlinePhysics MotivationExperimental SetupData AnalysisConclusionReferences000000000000000000000000

Electron ID requires multiple cuts to select a clean sample of events

OutlinePhysics MotivationExperimental SetupData AnalysisConclusionReferences000000000000000000000

After selecting the electron, identify the hadrons

- Require track hits in
 - Drift Chambers
 - Time-of-Flight Detector
- Identification based on minimizing time: $\Delta t = (t_{measured} - t_{hypothesis})$
- Track assigned to the particle that best fits the hypothesis
- Fiducial volume drift chamber position based cuts

13/25

After selecting the electron, identify the hadrons

13/25

Exclusive Event Selection

Applying exclusivity cuts helps to remove background events

Exclusive Event Selection

Exclusivity cuts significantly reduce contamination of positive pions as kaons .

 Δt vs p for Kaon⁺ without EB pid with all exclusivity cuts applied.

Selection of exclusive ϕ meson electroproduction based on fit to data.

 K^+K^- invariant mass spectrum from the combined datasets.

15/25

Selected exclusive ϕ meson event in detector.

(a) Negative "inbending" field (torus -1)

(b) Negative "outbending" field (torus +1)

Figure: Inbending vs outbending. Proton curvature reverses between the two configurations. (**Real** ϕ events!)

Simulating Vector ϕ Meson Electroproduction

- Empirical paramterization of the exclusive ϕ vector meson was developed.
 - dipole vs exponential t-dependence
- Particle interactions with detector performed using Geant4-MC (GEMC)
- Find agreement between model and results from Nature
 - match resolution between data and simulation.
 - similarities in final state kinematic distributions

Rendering of the CLAS12 detector from GEMC with reconstructed tracks.

Resolution Agreement

Resolutions are modified to reproduce distributions in data.

- Smear GEMC reconstructed p, θ, φ of particles informed by simulation.
- Compare results of calculated masses between GEMC and data.

Smearing p, θ, ϕ from GEMC broadens peak width for calculated K^+ .

18/25

ϕ Production Model

Model is parameterized based on available data from fixed-target experiments.

- The power-like *t*-depedence (i.e. dipole model) yielded better agreement to data.
- Tuning of model parameters was required
 - ► Reduce dependency on cross section at production threshold → insight into production mechanism.

ϕ Production Model

Model is parameterized based on available data from fixed-target experiments.

- The power-like t-depedence (i.e. dipole model) yielded better agreement to data.
- Tuning of model parameters was required
 - ► Reduce dependency on cross section at production threshold → insight into production mechanism.

Beam Spin Asymmetry via Sideband Subtraction

Determination of the BSA using sideband subtraction technique.

Calculate asymmetry over Q^2 , x_B , -t, and W. kinematics.

Calculate asymmetry over Q^2 , x_B , -t, and W. kinematics.

OutlinePhysics MotivationExperimental SetupData AnalysisConclusionRefere000000000000000000000000

Calculate asymmetry over Q^2 , x_B , -t, and W. kinematics.

Calculate asymmetry over Q^2 , x_B , -t, and W. kinematics.

		Data Analysis	
0		00000000000000	

Outline

- Physics Motivation
- Experimental Setup
- Data Analysis
- Conclusion

OutlinePhysics MotivationExperimental SetupData AnalysisConclusionReferences00000000000000000000•00

Conclusion

- Measured a non-zero beam spin asymmetry (BSA).
 - Negative BSA and adjustment to Monte-Carlo model imply enhancement of scalar-pseudoscalar exchange mechanisms at threshold.
- **Pioneering** in validating the gluon contribution of transversity GPDs to the BSA.
 - recall: $A_{LU}^{sin(\phi)} \sim Im \left(H_T E - E_T H\right)$
- Validated results across separate but similar analyses.

Left - pseudo-scalar π^0, η exchange mechanism. Right - scalar, f_0 , exchange mechanism

Future work will be done at large x [3].

Going Forward...

- test new event generator based on scalar-pseudoscalar exchange mechanisms,
- improve statistics with analysis of full dataset for BSA,
- incorporate multivariate analysis techniques for final state extraction,
- draft preliminary publication paper.

Left - pseudo-scalar π^0, η exchange mechanism. Right - scalar, f_0 , exchange mechanism

Future work will be done at large x [3].

		Conclusion	
		000	

Thank You!

This work was supported by the US DOE, Office of Nuclear Physics, under contract no. DE-FG-04ER4130

Outline 0	Physics Motivation	Experimental Setup 00	Data Analysis 000000000000	Conclusion 000	References
	Derek B. Leinv Chromodynam	weber. "Visializa ics". In: (2003).	tions of Quan	tum	
	V.D. Burkert e Jefferson Labor (2020), p. 1634	et al. "The CLAS ratory". In: <i>Nucl</i> 19. DOI: 10.1016	512 Spectrom . Instrum. M 5/j.nima.202	eter at eth. A 959 20.163419.	
	CLAS Collaboration. "Proposal to Jefferson Lab PAC39 Exclusive Phi Meson Electroproduction with CLAS12". In: (). URL: https://www.jlab.org/exp_prog/proposals/12/PR12- 12-007.pdf.				

