Beam Spin Asymmetry for Deeply Virtual Exclusive π^0 Electroproduction with CLAS12

> Andrey Kim University of Connecticut

CLAS Collaboration Meeting November 11th, 2020

UCONN | UNIVERSITY OF

Andrey Kim (UCONN)

Deeply Virtual π^0 Electroproduction

Chiral even GPDs:

 DVCS on unpolarized and polarized targets with polarized beam by HERMES, JLAB and COMPASS

Chiral-odd GPD results:

- Deeply virtual meson production
- Lattice QCD by Göckeler et al

$$\sigma = \sigma_0 + \sqrt{2\epsilon(1+\epsilon)}\sigma_{LT}^{\cos\phi}\cos\phi + \epsilon\sigma_{TT}^{\cos2\phi}\cos2\phi + \lambda_e\sqrt{2\epsilon(1-\epsilon)}\sigma_{LT'}^{\sin\phi}\sin\phi$$

PHYSICAL REVIEW D 84, 034007 (2011)

Flexible parametrization of generalized parton distributions from deeply virtual Compton scattering observables

Gary R. Goldstein,^{1,6} J. Osvaldo Gonzalez Hernander,^{2,1} and Simonetta Liuti^{2,4} ¹Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA ²Department of Physics, University of Virginia, Charlottesville, Virginia 22001, USA (Received 16 February 2011; published 5 August 2011)

Eur. Phys. J. A (2011) 47: 112 DOI 10.1140/epjn/2011-11112-6	THE EUROPEAN PHYSICAL JOURNAL A
Regular Article – Theoretical Physics	
Transversity in hard exclusive e	ectroproduction of pseudoscal

Transversity in hard exclusive electroproduction of pseudoscalar mesons

S.V. Goloskokov^{1,a} and P. Kroll^{2,3,b}

$$\langle F \rangle = \sum_{\lambda} \int_{-1}^{1} dx \mathcal{H}_{0\lambda,\mu\lambda} \left(x, \xi, Q^2, t \right) F \left(x, \xi, t \right)$$

Goloskokov-Kroll model:

$$\begin{split} \sigma_{L} &\sim \left\{ \left(1-\xi^{2}\right) \left| \langle \tilde{\boldsymbol{H}} \rangle \right|^{2} - 2\xi^{2} \operatorname{Re}\left[\langle \tilde{\boldsymbol{H}} \rangle^{*} \langle \tilde{\boldsymbol{E}} \rangle \right] - \frac{t'}{4m^{2}} \xi^{2} \left| \langle \tilde{\boldsymbol{E}} \rangle \right|^{2} \right\} \\ \sigma_{T} &\sim \left[\left(1-\xi^{2}\right) \left| \langle \boldsymbol{H}_{T} \rangle \right|^{2} - \frac{t'}{8m^{2}} \left| \langle \tilde{\boldsymbol{E}}_{T} \rangle \right|^{2} \right] \\ \sigma_{LT} &\sim \xi \sqrt{1-\xi^{2}} \frac{\sqrt{-t'}}{2m} \operatorname{Re}\left[\langle \boldsymbol{H}_{T} \rangle^{*} \langle \tilde{\boldsymbol{E}} \rangle \right] \\ \sigma_{TT} &\sim \frac{t'}{16m^{2}} \left| \langle \tilde{\boldsymbol{E}}_{T} \rangle \right|^{2} \\ \sigma_{LT'} &\sim \xi \sqrt{1-\xi^{2}} \frac{\sqrt{-t'}}{2m} \operatorname{Im}\left[\langle \boldsymbol{H}_{T} \rangle^{*} \langle \tilde{\boldsymbol{E}} \rangle \right] \end{split}$$

CLAS12 First Experiment

V. Burkert et al., Nucl.Instrum.Meth.A 959 (2020) 163419

- CEBAF Large Acceptance Spectrometer
- 10.6 GeV longitudinally polarized electron beam
- First CLAS experiment since 12 GeV upgrade
- 86% electron polarization
- Liguid hydrogen target
- All final state particles detected
- Access Q² range up to 10 GeV²

PID cuts for exclusive π^0 electroproduction

All final state particles events selection $e + p + \gamma + \gamma$:

- Electron (cuts based on RGA analysis note):
 - Event Builder pid cut "pid==11"
 - NPHE cut
 - Vertex cut
 - DC fiducial cuts: region 1,2,3
 - EC fiducial cut
 - PCAL energy cut
 - EC sampling cut
- Proton:
 - Event Builder pid cut "pid==2212"
 - Δvertex cut
 - DC fiducial cuts: region 1,2,3
 - Forward Detector only
- Photons:
 - Event Builder pid cut "pid==22"
 - Forward Detector only
 - Photon sector is different from electron sector
 - Hits in, at least, two ECAL layers
- Loose π^0 cut:
 - $0.07 < M_{\gamma\gamma} < 0.2~{
 m GeV}$

Exclusive distributions

1. $e + p + \gamma + \gamma$ detected 2. loose π^0 mass cut

 Invariant mass of two photons clearly shows the mass of the neutral pion and tighter cut of 3σ should be used to further improve selection

Deeply Virtual π^0 Electroproduction

All cuts for exclusive π^0 electroproduction

All final state particles events selection $e + p + \gamma + \gamma$:

Electron (cuts based on RGA analysis note):

- Event Builder pid cut "pid==11"
- NPHE cut
- Vertex cut
- DC fiducial cuts: region 1,2,3
- EC fiducial cut
- PCAL energy cut
- EC sampling cut

Proton:

- Event Builder pid cut "pid==2212"
- Δvertex cut
- DC fiducial cuts: region 1,2,3
- Forward Detector only

Photons:

- Event Builder pid cut "pid==22"
- Forward Detector only
- Photon sector is different from electron sector
- Hits in, at least, two ECAL layers

• Loose π^0 cut:

• $0.07 < M_{\gamma\gamma} < 0.2 \text{ GeV}$

Exclusive cuts

- $|\Delta p_{\chi}| < 0.2 \text{ GeV}$
- $|\Delta p_y| < 0.2 \text{ GeV}$
- $\theta_{X\pi} < 2^{\circ}$
- $MM^2(epX) < 0.5 \text{ GeV}^2$
- Tight π^0 cut:
 - $0.096 < M_{\gamma \gamma} < 0.168 \; {
 m GeV}$

Exclusive distributions

8/19

Kinematic coverage, binning

CLAS12 allows:

- azimuthal dependence analysis
- multidimensional binning
- extended kinematic coverage

DIS cuts: $Q^2 > 2 \text{ GeV}^2$ and W > 2 GeV

- 5 $\{Q^2, x_B\}$ bins
- each $\{Q^2, x_B\}$ bin has 3 t bins
- each $\{Q^2, x_B, -t\}$ bin has 9 ϕ bins

in total: 135 $\{Q^2, x_B, -t, \phi\}$ bins

Beam spin asymmetry

$$\left(\mathsf{BSA} = \frac{\sum \frac{1}{Pb_i} n_i^+ - \sum \frac{1}{Pb_i} n_i^-}{n^+ + n^-}\right)$$
 where Pb_i is an element of Pb_i and Pb_i is an element of Pb_i and Pb_i is an element of Pb_i and Pb_i and

here Pb_i is an electron beam polarization for run periods

$$\sigma = \sigma_0 + \sqrt{2\epsilon(1+\epsilon)}\sigma_{LT}^{\cos\phi}\cos\phi + \epsilon\sigma_{TT}^{\cos2\phi}\cos2\phi + \lambda_e\sqrt{2\epsilon(1-\epsilon)}\sigma_{LT'}^{\sin\phi}\sin\phi$$
$$BSA = \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \propto A_{LU}^{\sin\phi}\sin\phi$$
$$A_{LU}^{\sin\phi} = \sqrt{2\epsilon(1-\epsilon)}\frac{\sigma_{LT'}^{\sin\phi}}{\sigma_0}$$

The Beam Spin Asymmetry as a function of ϕ for one of the kinematic bins

Deeply Virtual π^0 Electroproduction

Preliminary BSA from CLAS12 first experiment data [inbending]

Preliminary $\frac{\sigma_{LT'}}{\sigma_0}$ from CLAS12 first experiment data

- beam spin asymmetry (BSA) extracted for 5 Q^2 , x_B bins with FD proton
- the ratio of structure functions $\frac{\sigma_{LT'}}{\sigma_0}$ can be extracted from BSA by dividing on $\sqrt{2\epsilon(1-\epsilon)}$

Q² [GeV²]

Systematic studies of exclusive events selection

$$\begin{split} |\Delta P_x| \begin{cases} < 0.18 \; \text{GeV} \\ < 0.2 \; \text{GeV} \\ < 0.22 \; \text{GeV} \end{cases} & |\Delta P_y| \begin{cases} < 0.18 \; \text{GeV} \\ < 0.2 \; \text{GeV} \\ < 0.22 \; \text{GeV} \end{cases} & \theta_{X\pi} \begin{cases} < 1.8^{\circ} \\ < 2^{\circ} \\ < 2.2^{\circ} \end{cases} \end{split}$$

• $3 \Delta P_x \times 3 \Delta P_y \times 3 \Delta P_x$ variations = 27 combinations

• 27 BSA values extracted for each kinematic bin

• For each kinematic bin the systematic uncertainty is estimated as:

 $\Delta_{\textit{sys}} = \textit{max}(|\textbf{A}_1 - \textbf{A}_{\textit{nom}}|, \dots, |\textbf{A}_{27} - \textbf{A}_{\textit{nom}}|)$

Preliminary BSA from CLAS12 first experiment data [inbending]

Preliminary $\frac{\sigma_{LT'}}{\sigma_0}$ from CLAS12 first experiment data

Q² [GeV²]

Andrey Kim (UCONN)

Deeply Virtual π^0 Electroproduction CLAS Collaboration Meeting 16/19

Checklist.

• Finalize systematic studies

- Exclusive events selection: exclusivity cut, PID etc
- Fitting procedure, additional fitting parameters
- Acceptance and large kinematic bins
 - Simulation
- Cross check analysis (guidelines appreciated)
- Study kinematic binning schemes
- Finalize analysis note [overleaf here]
- Draft preliminary version of the paper

18/19

Simulation

- GEMC simulation for inbending and outbending data
- aao_norad generator: github here
 - Structure functions based on GK model
 - Parameterized using CLAS6 data by Valery

Summary

• CLAS12 and polarized electron beam enables the extraction of BSA moments for exclusive π^0 electroproduction

 $\bullet~10.6~{\rm GeV}$ electron beam extends our reach to the higher Q^2 kinematic regions

• $\frac{\sigma_{LT'}}{\sigma_0}$ is positive and large, compatible with previously observed BSA moments

• These data will provide further insight into chiral-odd GPDs and constrain their parameterizations

