MesonEx: Two Pion Production

Adam Thornton PhD Student

CLAS Collaboration Meeting 12/11/2020

MesonEx: Two Pion Production

Introduction

- PhD thesis project: 2π photo-production
- Motivation
- First look at data analysis
- Future steps and plans

Introduction

Barvon

Hybrid

Glueball

2.5

Meson

Tetraguark

Motivation

- Search for mesons at CLAS12
 - > Regular, hybrid, exotic?

QCD allows only colour neutral states (hadrons)

(hadrons)

3

- No restrictions on how to form them however
- Usual combinations: \mathbf{J}^{PC}
 - + baryons, mesons
- Exotic combinations:

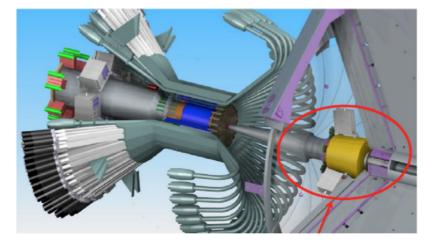
+ glueballs

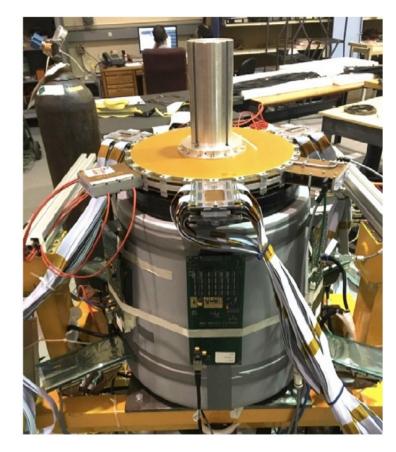
- + hybrid mesons
- + tetra-quark
- + hadronic molecule

Blue boxes representing the lightest hybrid mesons as calculated with LQCD (m_π~400MeV), exotic

quantum numbers on right

Hadronic


Molecule


https://arxiv.org/abs/1106.5515 https://arxiv.org/abs/1405.4195

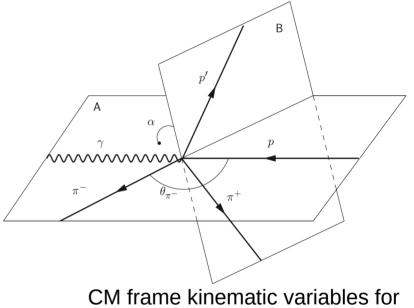
Introduction

Mesonex Experiment (run group A)

- Quasi-real photon scattering at very low Q² (10⁻² to 10⁻¹ GeV², high flux and linear polarisation)
- 5cm LH₂ target
- Using forward tagger (scattered electron θ =2.5 to 4.5°)
 - Hodoscope and calorimeter
- Use tagger for trigger → electron in FT + 2 tracks in FD (skim3)
- Study meson spectrum around 1.5 to 2.5 GeV

https://www.jlab.org/exp_prog/proposals/11/PR12-11-005.pdf

Introduction


Data Analysis

Since many of the mesons of interest decay to 2π , use final-state: electron + proton + π ⁺ + π ⁻

- Dataset: pass1 inbending/outbending skim3
 - Mesonex trigger: e FT, >=2 tracks in FD
- Transfer to local computing system at Glasgow
- Analyse events with Chanser* (C++/ROOT analysis framework)
 - Select my finalstate of interest (electron + proton + π^+ + π)
 - Using either event builder or charge + "delta-time" for PID
 - Calculate quantities of interest (4 vectors \rightarrow masses, angles, etc)
 - Apply cuts (exclusivity, fiducal, region, PID, other)
 - Output as ROOT trees
 - Plots and post-processing in Python (uproot, numpy and matplotlib)
- Next steps

5

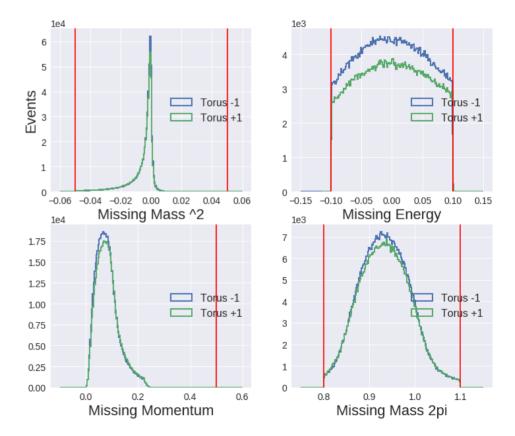
- Fitting decay angles with Brufit* (C++/ROOT analysis framework)
- Simulations needed for fit, using clas12software singularity

 $\gamma p \rightarrow p' \pi^+ \pi^-$ (baryon example)

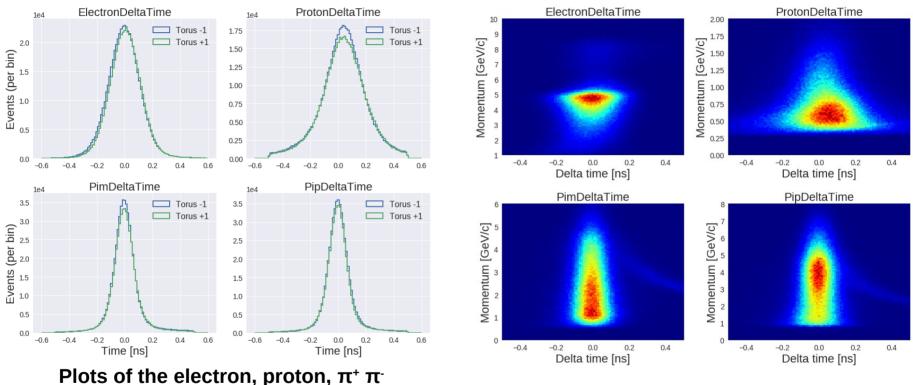
https://www.sciencedirect.com/ science/article/pii/S0146641019300870

https://github.com/dglazier/chanser https://github.com/dglazier/brufit

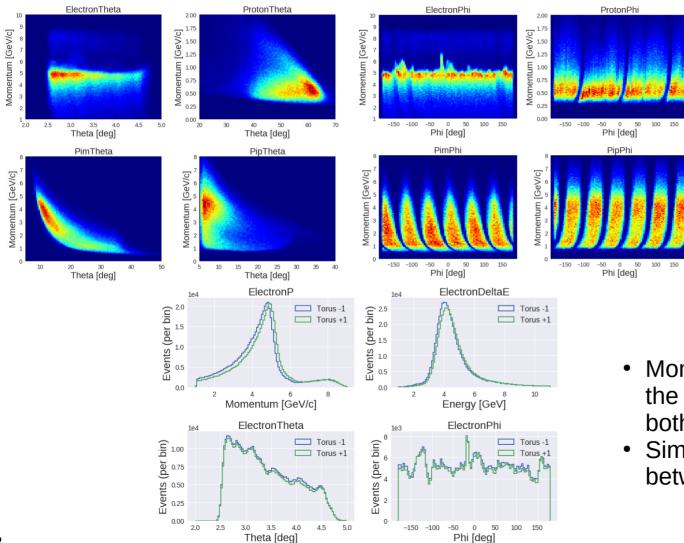
Dataset: pass1 inbending and outbending skim 3 ALL files (2.8TB and 2.5TB respectively)


Finalstate: electron + proton + π^+ + π^-

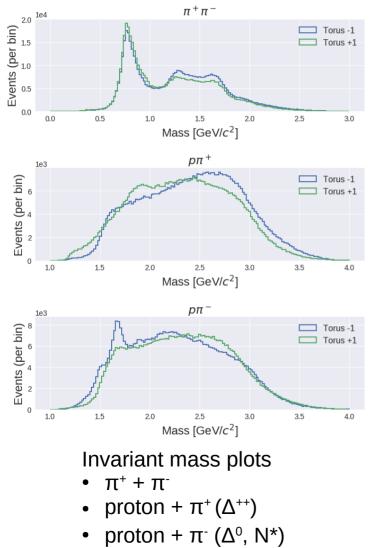
Event selection:

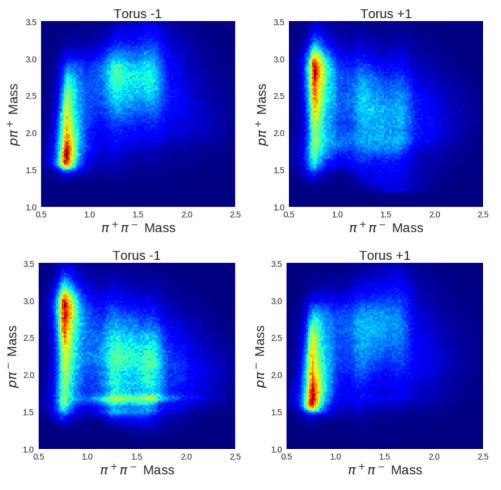

Variable	Value	Unit
Electron Δt	±1.0	ns
Proton and $\pi(\pm)$	±0.5	ns
Missing mass ²	±0.05	(GeV/c ²) ²
Missing energy	±0.1	GeV
Missing momentum	<0.5	GeV/c
Missing mass (e $\pi^+ \pi^-$)	0.8 <m<1.1< td=""><td>GeV/c²</td></m<1.1<>	GeV/c ²
Trigger bit 25 (mesonex)	1	-
Electron region	1000 (FT)	
$\pi(\pm)$ region	2000 (FD)	

Notes:

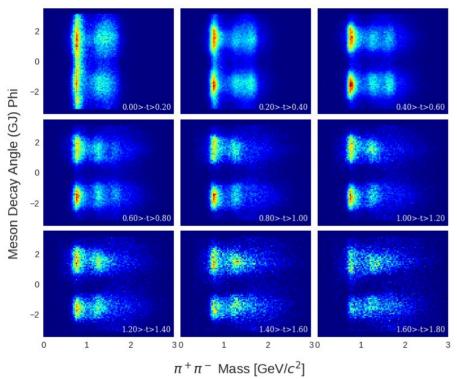

- events after finalstate processing:
 - Inbending 531727
 - Outbending 508944

Exclusivity cuts for both datasets

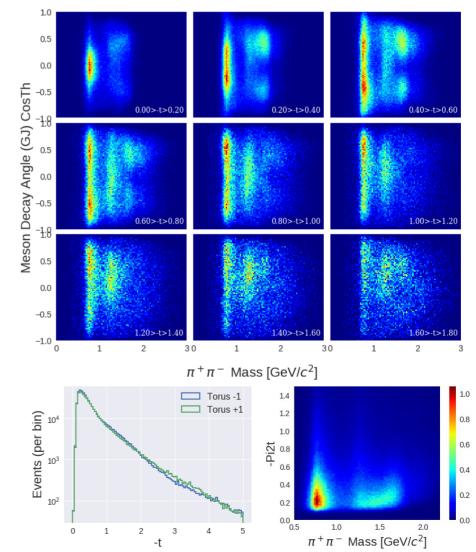

- → Chanser particle "delta-time" used for PID:
 - → Use the charge to guess PID, compare the hypothesised momentum against time of flight
 - Expect a value centred at zero if correctly identified
- Values well within timing cuts (1ns electron, 0.5ns otherwise)



8


For the inbending dataset, theta and phi angles

- Moment and angles for the electron, comparing both datasets
- Similar stats and shape between torus settings



Comparing for different torus settings

Decay angles of the meson $(\pi^+\pi^-)$ Φ (left) and cos(θ) (right)

For both datasets, as a function of t (between 0 and 1.8)

Next Steps: Moments Fitting

Extracting polarised harmonic moments

- Following V. Mathieu's et al $\eta\pi^0$ paper
- Apply the same approach to a 2π final-state
- Using Brufit (extended maximum likelyhood)
- Decay angles → moments → (SDMEs and/or partial waves)
- Formalism in appendix of paper
- Accurate simulations required (work in progress)

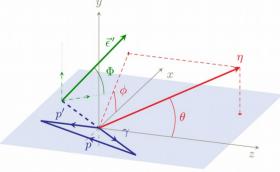
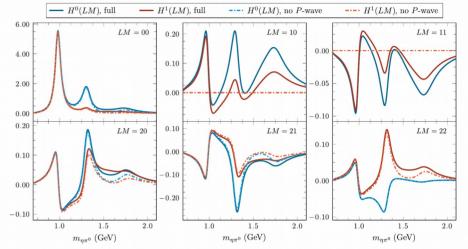



FIG. 7. Definition of the angles in the helicity frame. The reaction plane xz, containing the momenta of the photon beam (γ) , the nucleon target (p), and recoiling nucleon (p'), is in blue. θ and ϕ are the polar and azimuthal angles of the η . The polarization vector of the photon forms an angle Φ with the reaction plane.

III. MOMENTS

From the intensities in Eqs. (4), one computes the moments

$$\begin{split} H^{0}(LM) &= \frac{P_{\gamma}}{2} \int_{\circ} I(\Omega, \Phi) d^{L}_{M0}(\theta) \cos M\phi, \\ H^{1}(LM) &= \int_{\circ} I(\Omega, \Phi) d^{L}_{M0}(\theta) \cos M\phi \cos 2\Phi, \\ \mathrm{Im} H^{2}(LM) &= -\int_{\circ} I(\Omega, \Phi) d^{L}_{M0}(\theta) \sin M\phi \sin 2\Phi, \end{split}$$
(13)

Example from paper (fig 2) of unpolarised (blue) and polarised (red), for L = 0, 1, 2, in helicity frame. Solid lines full model, dotted without P wave.

11

MesonEx: Two Pion Production

Conclusions

- Early analysis presented
- Workflow for data analysis
 - Tools are working, pass1 dataset good for now!
- Cuts have been refined, removed sufficient background
- Possible to see mesons, extract values

Next steps

- Produce accurate simulated data (needed for fits)
- Fit the meson decay angles
- Extract the moments (for use with partial waves)

Thanks for your attention! Any questions?