CLAS12 ALERT Project Status A Low Energy Recoil Tracker

Whitney Armstrong

Argonne National Laboratory

ALERT Collaboration

November 12, 2020

The ALERT Experiments

A comprehensive program to study nuclear effects

Coherent Processes on ${}^{4}\mathrm{He}$

- 4 He($e, e' {}^{4}$ He γ)
- 4 He($e, e' {}^{4}$ He ϕ)

Explores the partonic structure of ${}^{4}\mathrm{He}$

DIS on ${}^{4}\text{He}$ and ${}^{2}\text{H}$: Tagged EMC Effect

- ⁴He(*e*, *e*'+³H)X (proton DIS)
- 4 He $(e, e'+{}^{3}$ He)X (neutron DIS)
- ${}^{2}H(e, e' + p)X$ (neutron DIS)

Test FSI and rescaling models

Incoherent processes on ${}^{4}\text{He}$ and ${}^{2}\text{H}$

- 4 He($e, e'\gamma p + {}^{3}$ H)
- 4 He $(e, e'\gamma + {}^{3}$ He)n
- ${}^{2}\mathsf{H}(e,e'\gamma+p)n$

Identify medium modified nucleons

An energy more channels for free W.R. Armstrong

The Partonic Structure of the alpha particle

• Two goggles to view the nucleus

2 / 22

• Coherent DVCS to probe the charge profile

The Partonic Structure of the alpha particle

- Two goggles to view the nucleus
- Coherent DVCS to probe the charge profile
- Coherent ϕ production to probe the gluon profile

2 / 22

The Partonic Structure of the alpha particle

- Two goggles to view the nucleus
- Coherent DVCS to probe the charge profile
- Coherent ϕ production to probe the gluon profile
- How does the gluonic form factor compare to the charge?

4He Transverse Quark and Gluon Densities

Coherent scattering on ⁴He

W.R. Armstrong

Experimental Setup: CLAS12 + ALERT

- Use CLAS12 to detect scattered electron, e', and forward scattered hadrons.
- A low energy recoil tracker (ALERT) will detect the spectator recoil or coherently scattered nucleus

ALERT requirements

- Identify light ions: H, $^2\text{H},\,^3\text{H},\,^3\text{He},$ and ^4He
- Detect the **lowest momentum** possible (close to beamline)
- Handle high rates
- Survive high radiation environment \rightarrow high luminosity

Why ALERT?

A new detector is needed

• Existing and proposed detectors (RTPCs) do not meet experimental needs

- ALERT is designed to operate in CLAS12's 5 T field
- Run group will operate at CLAS12 luminosity limit and Hall-B beam current limit
- ALERT will **provide full PID** of light ions, protons to ⁴He

W.R. Armstrong

ALERT Design

Basic Design

- Detector will surround a \sim 3 atm gas target cell which is 6 mm in radius and constructed with 25 μ m kapton walls
- Hyperbolic drift chamber with 10° stereo angle.
- Outer scintillator hodoscope for PID

ENERG I managéd by UChicago Argonne, LLC

Hyperbolic Drift Chamber (HDC) Design

- 2 mm wire separation
- 10° stereo angle
- Minimize material (windows/walls)
- Detects $\theta\sim 30^\circ$ to 170°
- Acceptance minimum momenta: protons $\rightarrow 70~{\rm MeV/c}$ $^4{\rm He} \rightarrow 240~{\rm MeV/c}$

ALERT Hyperbolic Drift Chamber (HDC)

HDC Status

- Simulations of stresses on endplates complete
- MACOR forward endplate fabricated
- Wire assembly tools and jig for full detector

W.R. Armstrong

Courtesy of Julien Bettane

ALERT Time-of-flight (ATOF)

Design
Goal of $150~{ m ps}$ time resolution
Inner bar thickness : 3 mm. Outer wedge thickness : 2 cm.

TOF separates light ions, except ${}^{4}\mbox{He}$ and ${}^{2}\mbox{H}$ which have same m/q ratio

W.R. Armstrong

November 12, 2020 8 / 22

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

ATOF Module

Note this is a older module design.

Module design status

- Conceptual design of rigid-flex PCBs and assembly complete.
- Design freeze of HDC's PCB radius needed to finalize ATOF module design .

W.R. Armstrong

ATOF System Layout

- Readout electronics will mount on the upstream plate of ALERT
- All active components will be outside of the drift gas volume
- Developing modular readout electronics with engineering support from Nalu Scientific and JLab Fast electronics group
 - \rightarrow JLab Petiroc2A readout board (standard)

 \rightarrow Nalu – ASOC readout board (waveform digitizing)

Latest Mechanical Design

Latest Mechanical Design

W.R. Armstrong

ATOF Rigid-Flex PCB

W.R. Armstrong

Cable and Connectors

Figure 2: High level block diagram defining the Nalu digitizer interfaces to the rest of the ATOF system

W.R. Armstrong

Readout Board Design

Nalu Readout Board block diagrams

- Trade study complete.
- Phase II development underway.

Figure 3. Digitizer board level block diagram

Figure 5: Power Tree

W.R. Armstrong

November 12, 2020 15 / 22

1

Prototype Petiroc2A Readout Board

- Placement was redone to optimize SiPM -> ASIC traces
- Routing in progress probably another week or two before ready for assembly

Features:

- 128 channels (PMT or SiPM inputs)
- · Few to few thousand photoelectron charge measurement sensitivity
- <50ps hit timing resolution
- Expected >50kHz trigger rate capable
- Optical readout with Jlab FPGA readout board. Jlab CODA integration with SSP backend optical concentrator.

Courtesy Ben Raydo

W.R. Armstrong

The ATOF Readout Module Team

Argonne

Tom O'ConnorMEPTodd HaydenHEP Electronics groupTim CundiffHEP Electronics groupW.A.MEP

Tom is ALERT design and integration lead. HEP fast electronics group is design the rigid-flex PCBs.

JLab

Ben Raydo Chris Cuevas and others Fast Electronics group Fast Electronics group JLab is developing the primary Petiroc2A readout board. Ben is local JLab electronics expert.

Nalu Scientific

Isar Mostafanezhad Ryan Pang Luca Macchiarulo and others. Lead Board design Firmware Nalu is developing ASOC (waveform digitizer) based readout board. Trade study report expected late July.

ATOF Readout Electronics meeting every 2 weeks on Friday.

W.R. Armstrong

ALERT at ALTO Beam Test

HDC Prototype and gas box:

W.R. Armstrong

Prototype 3

ALTO at Orsay:

AHDC at ALTO Beam Test

- Will run with alpha, proton and deuteron (time permitting).
- Energies will be the same as those targeted for experiment.
- Trigger will be external silicon detector or the accelerator RF signal.
- Will study the efficiency, position/time resolutions, and energy loss.
- Beam test starts next week scheduled for two weeks running 18 hour days.

W.R. Armstrong

ALERT Status and Plans

- Prototype tests underway.
- Future tests include:
 - \rightarrow High field facility tests
 - \rightarrow In-beam prototype tests at ALTO
- Working closely with Hall B Task Force to prepare for experiment
- Followup to Nov. 2019 ERR expected early spring 2021
- Some delays due to COVID19
- Detailed project schedule and plans. (not yet considered for beam time scheduling)
- Significant progress on hardware and software fronts

W.R. Armstrong

Summary

- Physics of ALERT is a comprehensive program to study nuclear effects
- ALERT design and construction is steadily progressing.

W.R. Armstrong

Thank you!

W.R. Armstrong

backup

W.R. Armstrong

HDC Wire Tooling

Attaching the wires

Wires are crimped to the PCB via feedthroughs

Crimping thanks to specific tooling

Some of the elements have already been successfully tested November 12, 2020 21 / 22

ALERT Cart

ALERT Support Structure

W.R. Armstrong

Upstream Plate

W.R. Armstrong

ALERT Simulation

W Sorgevova WLR Armstrong

ATOF in green & magenta; AHDC in purple & red. GEMC geometry.

ALERT software November 12, 2020

21 / 22

5/14

Argonne High Field Test Facility

Maximum Field	4 T
Bore diameter	
with gradient coils	68 cm
w/o gradient coils	90 cm
Homogeneity	10^{-5}
Removable rails	

In field tests:

- ATOF readout electronics test component magnetics.
- **2** HDC prototype wire forces
- S Full ALERT detector

W.R. Armstrong

ATOF Readout Module Boards

- Upstream plate feed-through connector design
- Rigid-flex PCB will connect SiPMs to upstream readout electronics
- Interchangeable readout modules (Petiroc2A and Nalu's ASOC) connect to JLab's SSP concentrator.

W.R. Armstrong

