

Stefan Diehl

for the CLAS collaboration

Justus Liebig University Giessen University of Connecticut

Physics Motivation

3D structure of the ground state nucleon: Classical GPDs

→ Measured with processes like DVCS, DVMP,

3D structure of excited nucleon states: transition GPDs

unpolarized:	polarized:
$\int_{-1}^{1} dx H_M(x;\xi;t) = 2G_M^*(t) \qquad \text{for the formation } dx H_M(x;\xi;t) = 2G_M^*(t) \qquad for$	$\int_{-1}^{1} dx C_1(x;\xi;t) = 2C_5^A(t) $
$\int_{-1}^{1} dx H_E(x;\xi;t) = 2G_E^*(t) \begin{bmatrix} \overrightarrow{\mathbf{e}} & \overrightarrow{\mathbf{e}} \\ \mathbf{z} & \mathbf{z} \\ \mathbf{z} & \mathbf{z}$	$\int_{-1}^{1} dx C_2(x;\xi;t) = 2C_6^A(t)$
$\int_{-1}^{1} dx H_C(x;\xi;t) = 2G_C^*(t) \qquad \text{tran}$	$\int_{-1}^{1} dx C_3(x;\xi;t) = 2C_3^A(t) $ factor
$\int_{-1}^{1} dx H_4(x;\xi;t) = 0 \qquad \qquad$	$\int_{-1}^{1} dx C_4(x;\xi;t) = 2C_4^A(t) \int dx C_4(t) \int dx C_$

8 twist-2 GPDs:

Experimental Access to Transition GPDs

Experimental access: Non diagonal DVCS process

$$\gamma * p \rightarrow N * \gamma \rightarrow p meson \gamma$$

First Theoretical Description of the Δ Region

P.A.M Guichon, L.Mosse, M. Vanderhaeghen, Phys. Rev. D68 (2003) 034018

 $E_e = 6 \text{ GeV}, \ Q^2 = 2.5 \text{ GeV}, \ x_B = 0.3, \ t_v = -0.5 \text{ GeV}^2$

→ Predictions include a background modell

Previous Studies

Brahim Moreno, PhD thesis UNIVERSITE PARIS-SUD XI (2009)

 \rightarrow Studies based on CLAS6 data (E_B = 5.4 GeV)

CLAS12: \rightarrow Higher statistics \rightarrow Higher Q² accessible

Simulations

- ➔ A phase space event generator has been developed
- A realistic resoance mass distribution is implemented for the Δ region
- → The DVCS cross section is added as a weight

CLAS12 Experimental Setup in Hall B

→ Data recorded with CLAS12 during fall of 2018

→ 10.6 GeV electron beam → 87 % average polarization → liquid H₂ target

→ Analysed data ~ 20 % of the approved RG-A beam time

Final States and Kinematic Cuts

Two final states have been studied:

$$\gamma^* p \to N^* \gamma \to p \pi^0 \gamma \to p \gamma \gamma \gamma$$

 $\gamma^* p \to N^* \gamma \to n \pi^+ \gamma$

Kinematic cuts:

W > 2 GeV $Q^2 > 1 \text{ GeV}^2$ y < 0.8 $-t < 2 \text{ GeV}^2$ E_{DVCS} > 2 GeV

Exclusivity Distributions

→ All final state particles are detected

Experimental Particle Distributions

Accessible Kinematic Region

Resonance Mass Spectrum for $N^*{\rightarrow}n\pi^+$

The Pion Longitudinal Momentum Fraction

Resonance Mass Spectrum in Bins of α for $N^*{\rightarrow}n\pi^+$

Resonance Mass Spectrum for 0.1 < α < 0.4

Resonance Mass Spectrum for $N^{*} \rightarrow p \pi^{0}$

→ Also for the $p\pi^0$ final state, a cut on α helps to separate clean Δ events

Conclusion and Outlook

- CLAS12 provides excellent conditions to measure non-diagonal DVCS
- Resonance structures can be identified in the pion nucleon invariant mass spectrum
- A cut on the pion longitudinal momentum fraction α can help to separate the Δ resonance
- A first BSA extraction provides a qualitative agreement with transition GPD based theory predictions
- Since all parts of CLAS12 are used, a fully optimized setup is required to achieve optimal resolutions
- More statistics will help for BSA exctractions
- First goal: Extract / publish observables (BSA) as a function of the resonance mass
- Second goal: Separate the resonances, especially the Δ
- A framework for the extraction of transition GPDs will be developed in cooperation with theorists

