# Photoproduction of $\Lambda^*$ Resonances at CLAS

# CLAS Collaboration Meeting November 12, 2020

Utsav Shrestha, Ken Hicks & Chaden Djalali Ohio University





Supported in part by a grant from the NSF.

### Introduction

#### 2200 2200 $\Sigma_8$ $\Xi_{10}$ Ν Ξ $\Sigma_{10}$ Ω Δ $\Lambda_1$ $\Lambda_8$ 2100 2100 2000 2000 (MeV) (MeV) 1900 \_\_\_\_\_\_Λ(1690) 1900 Ξ Ξ \_\_\_\_\_Λ(1520) 1800 1800 $\Lambda(1670)$ Λ(1405) 1700 1700 B. G. Edwards, N. Mathur, D. G. Richards, and S. J. Wallace (Hadron Spectrum Collaboration), Flavor structure of the excited baryon spectra from lattice ocd. Phys. Bev. D 87, 054506 (2013) 1600 1600 3 5 $1^{-}$ $3^{-}$ $5^{-}$ $\frac{1^-}{2} \frac{3^-}{2}$ $3^{-}$ $5^{-}$ $3^{-}$ $5^{-}$ $1^{-}$ $3^{-}$ $3^{-}$ $1^{-}$ $3^{-}$ $\frac{1^-}{2} \frac{3^-}{2}$ $1^{-}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\overline{2}$ $\overline{2}$ $\overline{2}$ 2 2 2 2 2 2 2 2 2 2 2 2

#### Lattice QCD Calculations

#### The Particle Data Group Summary

#### Phase at Resonances in $\Sigma\pi$ Channel

|                 |       |            |                   |              |             |                                | _               | <b>{10}</b> |                               | {8}             | <b>{8}</b> |                            | <b>{8}</b> | <b>{8}</b> | {10}                                                    | <b>{</b> 1 <b>}</b>         |
|-----------------|-------|------------|-------------------|--------------|-------------|--------------------------------|-----------------|-------------|-------------------------------|-----------------|------------|----------------------------|------------|------------|---------------------------------------------------------|-----------------------------|
|                 | л     |            | Status as seen in |              |             |                                | $\Sigma$ (1385) |             |                               | $\Lambda(1670)$ | A(1690)    |                            | A(1820)    | ) A(1830)  | $\Sigma$ (203                                           | <ol> <li>A(2100)</li> </ol> |
| Particle        | $J^P$ | PDG rating | NTZ               |              | 5 45 500    |                                |                 | $P_{13}$    | • • •                         | $S_{01}$        | $D_{03}$   |                            | $F_{05}$   | $D_{05}$   | $F_{17}$                                                | $G_{07}$                    |
|                 |       |            | NK                | $\Lambda\pi$ | $\Delta\pi$ | Other Channels                 |                 |             | × ×                           |                 |            | X                          | ·          |            |                                                         | X                           |
| $\Lambda(1405)$ | 1/2-  | ****       | ****              |              | ****        |                                | - Γ π           | <i>í</i> `` | VÎÎ VÎÎ VÎ                    | V Ì             | ví ìv      |                            | Ý          | V V        | N N                                                     | ÌVÍ∎Ì∖                      |
| $\Lambda(1520)$ | 3/2-  | ****       | ****              | Fouldan      | ****        | $\Lambda\pi\pi, \Lambda\gamma$ | <i>→</i> ∠ π    |             |                               | A /             |            | A                          | A          |            |                                                         | 人二ノ                         |
| $\Lambda(1670)$ | 1/2-  | ****       | ****              | Forbidden    | ****        | $\Lambda\eta$                  |                 | •           | Sec. Dec. Dec                 | X               | x          | See Des                    | ×          | x          | $\mathbf{X}_{\mathbf{F}_{1,\mathbf{F}_{2}}} \mathbf{X}$ |                             |
| $\Lambda(1690)$ | 3/2-  | ****       | ****              |              | ****        | $\Lambda\pi\pi, \Sigma\pi\pi$  |                 |             | $A(1405) A(1520) \Sigma(167)$ | 0)              |            | $\Sigma(1750) \Sigma(177)$ | 5)         |            | $\Sigma_{(1915)}^{r_{15}}$                              | pdg.lbl.gov                 |
|                 |       |            |                   |              |             |                                |                 |             | [1] [1] [1] [8]               |                 |            | (8) (8)                    |            |            | رەز                                                     | 100                         |



 $J^P$ 

 $1/2^{+}$ 

 $1/2^{+}$ 

 $1/2^{-}$ 

 $3/2^{-}$ 

 $1/2^{-}$ 

 $3/2^{-}$ 

 $5/2^{-}$ 

 $1/2^{+}$ 

 $3/2^{+}$ 

 $5/2^{+}$ 

 $7/2^{-}$ 

 $9/2^{-}$ 

 $9/2^{+}$ 

 $(D, L_N^P) S$ 

The Quark Model

 $(56,0^+_0) \ 1/2 N(939) \ \Lambda(1116) \ \Sigma(1193) \ \Xi(1318)$ 

 $(56,0^+_2) \ 1/2 N(1440) \Lambda(1600) \ \Sigma(1660)$ 

 $(70,1_{1}^{-})$  1/2 N(1535)  $\Lambda(1670)$   $\Sigma(1620)$ 

 $(70,1_{1}^{-}) \ 1/2 N(1520) \Lambda(1690) \Sigma(1670)$ 

 $(70,1_1^-) \ 3/2 N(1650) \Lambda(1800) \ \Sigma(1750)$ 

 $(70,0^+_2) \ 1/2 N(1710) \Lambda(1810) \ \Sigma(1880)$ 

 $(56,2^+_2)$  1/2 N(1680)  $\Lambda(1820)$   $\Sigma(1915)$ 

 $(56,2^+_2)$  1/2 N(1720) A(1890)  $\Sigma(?)$ 

 $(70,1_1^-) \ 3/2 N(1700) \Lambda(?)$ 

 $(70,3^{-}_{3}) \ 1/2 N(2190) \Lambda(?)$ 

 $(70,3^{-}_{3}) \ 3/2 N(2250) \Lambda(?)$ 

 $(56,4^+_{4}) \ 1/2 N(2220) \Lambda(2350)$ 

 $(70,1_1^-) \ 3/2 N(1675) \Lambda(1830)$ 

Octet members

 $\Sigma(1560)^{\dagger}$ 

 $\Sigma(1620)^{-1}$ 

 $\Sigma(1775)$ 

 $\Sigma(?)$ 

 $\Sigma(?)$ 

 $\Sigma(?)$ 

 $\Sigma(1940)^{\dagger} \Xi(?)$ 

Singlets

 $\Lambda(1405)$ 

 $\Lambda(1810)^{\dagger}$ 

 $\Lambda(2100)$ 

 $\Xi(1820)$   $\Lambda(1520)$ 

 $\Xi(1690)^{\dagger}$ 

 $\Xi(?)$ 

 $\Xi(?)$ 

 $\Xi(1950)^{\dagger}$ 

 $\Xi(2030)$ 

 $\Xi(?)$ 

 $\Xi(?)$ 

 $\Xi(?)$ 

 $\Xi(?)$ 

 $\Xi(?)$ 

#### **The Reaction**



$$\gamma p \to K^+ \Lambda(1520) \to K^+ \Sigma^{\pm} \pi^{\mp}$$
  
 $\Lambda(1520) \to \Sigma^{\pm} \pi^{\mp} \to n \pi^{\pm} \pi^{\mp}$ 





Nov 12, 2020



Nov 12, 2020











#### **Differential Cross-sections**





- The  $\Lambda(1520)$  differential cross sections are shown as a function of CM angle and invariant 4-momentum transfer *t*, and extended for higher *W*.
- The *g12* results are in good agreement with previous CLAS measurements.
- The model calculations by Nam *et. al.* (2010), shown as dashed curves, reproduce the data very well.
- Some deviations at forward angles for W > 2.7 GeV may need more sophisticated theoretical approaches.



### **Systematic Uncertainties**

| Source                       | Description                            | Uncertainty |
|------------------------------|----------------------------------------|-------------|
| <i>t</i> -slope dependence   | <i>b</i> = 2.0 vs. <i>b</i> = 1.0      | 0.78%       |
| Timing Cut                   | 3σ vs. 2.5σ                            | 4.11%       |
| Minimum  p  cut              | Minimum   <i>p</i>   <i>vs.</i> no cut | 0.20%       |
| z-Vertex Cut                 | -110 < z < -70 vs. $-108 < z < -72$    | 1.28%       |
| Fiducial Cut                 | 50%(nominal) vs. 100%(tight)           | 3.13%       |
| Background Function          | Pol2 vs. Pol1                          | 2.07%       |
| Signal Integration Range     | 3.0 <i>o</i> vs. 3.5 <i>o</i>          | 0.43%       |
| Flux Consistency/Luminosity  | g12                                    | 1.70%       |
| Sector by Sector             | g12                                    | 5.90%       |
| Target                       | g12                                    | 0.50%       |
| Total Systematic Uncertainty | Added in quadrature                    | 8.45%       |





#### **Discussion and Conclusion**

- The theory calculations are the numerical results without the *N*<sup>\*</sup> contribution, and conserve gauge invariance.
- Theoretical study has concluded that the  $K^*$ -N- $\Lambda(1520)$  coupling must be very small to explain the data.
- Calculations with *N*<sup>\*</sup> show very small contribution, just above threshold, and is limited to the first W bin. Such calculations include only *N*<sup>\*</sup> resonances with mass below 2.2 GeV.
- The simplest theoretical model with a pseudoscalar *K*-meson exchange, assuming *t*-channel dominance, is sufficient to explain our data, without other processes like Regge,  $K^*$  and hyperon resonances. No new  $N^*$  resonances decaying into  $K^+\Lambda(1520)$  final state are found.
- This theoretical model can be used to study higher  $N^*$  resonances as well.

### Λ(1670) & Λ(1690)

| Dorticle        | τP   | DDC noting | Status as seen in |              |             |                                |  |  |  |
|-----------------|------|------------|-------------------|--------------|-------------|--------------------------------|--|--|--|
| Farticle        | J    | PDG rating | $N\overline{K}$   | $\Lambda\pi$ | $\Sigma\pi$ | Other Channels                 |  |  |  |
| $\Lambda(1405)$ | 1/2- | ****       | ****              |              | ****        |                                |  |  |  |
| $\Lambda(1520)$ | 3/2- | ****       | ****              | T 1.11       | ****        | $\Lambda\pi\pi, \Lambda\gamma$ |  |  |  |
| $\Lambda(1670)$ | 1/2- | ****       | ****              | Forbidden    | ****        | $\Lambda\eta$                  |  |  |  |
| $\Lambda(1690)$ | 3/2- | ****       | ****              |              | ****        | $\Lambda\pi\pi, \Sigma\pi\pi$  |  |  |  |





### Λ(1670) & Λ(1690)

$$\Lambda^* \to \Sigma^+ \pi^- \text{ or } \Sigma^- \pi^+$$
  
<0 0 | 1 +1 1 -1> = 1/\sqrt{3}  
<0 0 | 1 -1 1 +1> = 1/\sqrt{3}

$$\Sigma$$
(1670) 3/2 $^-$ 

$$I(J^P) = 1(\tfrac{3}{2}^-)$$

Mass m = 1665 to 1685 ( $\approx 1670$ ) MeV Full width  $\Gamma = 40$  to 80 ( $\approx 60$ ) MeV

$$\Sigma^{\scriptscriptstyle 0}$$
 coupling to the decay of  $\Sigma^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$  &  $\Sigma^{\scriptscriptstyle -}\pi^{\scriptscriptstyle -}$ 

~23%

 $\Sigma^{-}\pi^{+}$ 

$$\Sigma^{0} \rightarrow \Sigma^{+} \pi^{-} \text{ or } \Sigma^{-} \pi^{+}$$
  
<1 0 | 1 +1 1 -1> = 1/ $\sqrt{2}$   
<1 0 | 1 -1 1 +1> = -1/ $\sqrt{2}$ 

| Σ(1670) DECAY MODES | Fraction $(\Gamma_i/\Gamma)$ | p (MeV/c) |
|---------------------|------------------------------|-----------|
| NK                  | 7–13 %                       | 414       |
| $\Lambda\pi$        | 5–15 %                       | 448       |
| $\Sigma \pi$        | 30–60 %                      | 394       |



**{8**}

{8}

 $\Sigma^{0}(1670) 3/2^{-1}$ 

CLAS Collaboration Meeting | Photoproduction of  $\Lambda^*$  at CLAS | Utsav Shrestha | Ohio University

**{**1**}** 

**{8}** 

{1}

pdg.lbl.gov

#### Λ(1520) → Σ π



$$\Lambda(1520) \rightarrow \Sigma \pi$$

$$3/2^{-} \rightarrow 1/2^{+}0^{-}$$

$$I(\cos\theta, \phi) = \frac{3}{4\pi} \left\{ \varrho_{33} \sin^{2}\theta + \varrho_{11} (\frac{1}{3} + \cos^{2}\theta) - \frac{2}{\sqrt{3}} \operatorname{Re} \varrho_{31} \sin 2\theta \cos \phi - \frac{2}{\sqrt{3}} \operatorname{Re} \varrho_{3-1} \sin^{2}\theta \cos 2\phi \right\}$$

Barber *et. al.*, (1980)

The  $\Lambda(1520)$  spin density matrix elements are connected with the angular distribution of the decay products as parameters which multiply the angular functions.



## Λ(1520) Fit with sPlot

- We used *brufit* framework based on *RooFit*, developed by Derek Glazier. With help from him, we were able to proceed in our analysis.
- First, the so-called *sPlot* technique is applied to separate data distributions using a discriminatory variable, MM(K<sup>+</sup>), before actually fitting to the angular distributions of the final state.
- An event-by-event maximum likelihood fit to MM(K<sup>+</sup>) is performed to determine the contributions from signal and background to the Λ(1520) peak.
- An event-by-event *sWeight* is calculated for signal and background, which are then applied to the angular distributions on an event-by-event basis.

https://github.com/dglazier/brufit





 $\Lambda(1520)$  angular decay distributions



CLAS Collaboration Meeting | Photoproduction of  $\Lambda^*$  at CLAS | Utsav Shrestha | Ohio University

#### **Λ(1520) SDME**

$$\Lambda(1520) \rightarrow \Sigma \pi$$

$$\rho_{11} = 0.1755 \pm 0.0050$$

$$\rho_{31} = 0.10321 \pm 0.0045$$

$$\rho_{3-1} = 0.0615 \pm 0.0043$$



http://theses.gla.ac.uk/81591/ Pauli, Peter (2020) PhD thesis, GlueX. B. G. Yu and K. J. Kong. Photoproduction of  $\gamma p \to K + \Lambda^*(1520)$  and decay of  $\Lambda^*(1520) \to K^- p$  in the Reggeized framework. *Physical Review C*, 96(2):025208, 2017.



#### Outlook

- The higher mass resonance region has peak contributions from  $\Lambda(1670)1/2^{--} \& \Lambda(1690)3/2^{--}$ .
- $\Sigma(1670)3/2^{--}$  peak interferes destructively for  $\Sigma^+\pi^-$  channel and constructively for  $\Sigma^-\pi^+$  channel.
- Our goal is to somehow use the decay angular distributions of the resonances to separate the  $J^P = 1/2^{--}$  and  $J^P = 3/2^{--}$ .
- Using the spin density matrix elements, we want to fit the decay angular distribution for a resonance and select out the events corresponding to different  $J^{p} = 1/2^{--} \sim \Lambda(1670)$  and  $J^{p} = 3/2^{--} \sim \Lambda(1690)$ .



### **Thank You!**





### **Extras**







Nov 12, 2020

#### $K^{*0} \rightarrow K^+ \pi^-$ Backgound

Model prediction showing the difference in  $K^{*0}$  background contributions to the decay of  $\Lambda^*$  into two channels  $\Sigma^+\pi^-$  (red) and  $\Sigma^-\pi^+$  (blue).







# Trigger Correction "new"







FIG. 2. Shown are the photon coincidence-time distribution,  $\Delta t_{coinc}$ , for the events with  $K^+$ ,  $\pi^+$ , and  $\pi^-$  as the detected particles. Seen is the 2-ns bunching of the photon beam. Events with  $\Delta t_{coinc} = |t_{event} - t_{\gamma}| < 1$  ns cut on the coincidence-time distribution are selected.









Nov 12, 2020



Figure 2.19: Missing Mass distributions, showing the  $\Sigma^{\pm}$  peaks and the  $\Lambda(1520)$  peaks, when the  $\gamma p \to K^{*0}\Sigma^+$  reaction background is added to the usual MC simulations. The added reaction contributes to a flat background to the peaks.



Figure 3.1: Shown are the normalized *t*-value distribution for the data (black) and simulations with different *t*-slope parameters, b = 0.1 (magenta), 0.5 (cyan), 1.0 (green), 1.5 (red) and 2.0 (blue). The distributions are displayed for increasing *W*-energy ranges.

31/20

$$L(E_W) = \frac{\rho_p N_A l_t}{A_p} N_{\gamma}(W)$$
  

$$l_t = 40 \text{ cm}$$
  

$$\rho_p = 0.07114 \text{ g/cm}^3$$
  

$$A_p = 1.00794 \text{ g/mol}$$
  

$$N_A \text{ is Avogadro's number}$$



# Trigger Efficiency Map

Data: π<sup>+</sup>, Sector 2

 $\pi^+$ 

Data:  $\pi^+$ , Sector 1

þ [rad]





