9th International Workshop of Thin Films and New ideas for Pushing the Limits of RF Superconductivity (15-18 March 2021)

Electrodeposition of copper applied to the manufacture of seamless SRF cavities

Lucia Lain Amador, L. Ferreira, E. Garcia-Tabares, T. Koettig, M. Meyer, C. Pereira, A.T. Perez Fontenla, K. Puthran, G. Rosaz and M. Taborelli

CERN, Esplanade des particules 1, 1211 Geneva

This R&D program is supported by KT funding

Outline

1. Current production process/problematic

2.Technical proposal

3.Samples characterization

4. Dislocation density by EBSD

5.Towards first 1.3 GHz cavity

6.Optimization of the process

Production of copper SRF substrates

STANDARD METHOD - Half cell spinning and welding

Half cell spinning

Welding

Possible defects

Weld porosities

- Presence of porosities along the junction caused by the welding process
- Copper sheets can contain defects

Production of copper SRF substrates

SEAMLESS METHOD - Cell spinning around mandrel

Cell spinning

Cut-offs welding

Additional possible defects

– – – Beam axis

Mandrel footprint Cu cracking

- Mandrel footprint can appear on the copper surface
- Large deformation introduced in the process can lead to high cracking

Cu electroforming - approach

The cavity is produced by copper electroforming around a sacrificial aluminium mandrel which is precoated with a copper thin film.

- Robust and leak-tight seamless cavity
- Challenges
- Smooth inner surface state
- High copper purity and conductivity

Cu electroforming - approach

• Study the properties of electroformed copper in flat samples

• Study the robustness of the assembly in prepared cavity test dummies

DC plating

Pulsed plating (PP)

Dummy2

Electroformed copper properties

• UTS/ Young modulus

Roughness

Electroformed copper properties

Residual Resistivity Ratio

- DC matches Cu OFE specs after thermal treatment
- PP can lead to very high RRR without thermal treatment

- Thermal conductivity
- Samples measured after deposition
- Pulse plated sample conductivity 5 times larger than OFE spec.

- After 2h at 400°C
- Triplicated conductivity for DC plated after thermal treatment

Outline

1. Current production process/problematic

2.Technical proposal

3.Samples characterization

4.Dislocation density by EBSD

5.Towards first 1.3 GHz cavity

6.Optimization of the process

Electron back scatter diffraction (EBSD)

Cu OFE by Spinning and Electro-Hydraulic Forming (EHF)

Iris samples

E. García-Tabarés et al, Electron Backscatter Diffraction meeting. Plymouth, April 2018.

- To accommodate plastic deformation, the material generates dislocations, which disturb the structure of the lattice and lead to local misorientations.
- Study local misorentation by measuring the kernel average misorientation (KAM).
- This criteria displays small orientation gradients, highlighting areas of high Geometrically Necessary Dislocations (GND) density.

EBSD and dislocation density

<KAM>

7

6

5.5

5

4 3.5 3 2.5 2 1.5 1 0.5 0

4.5

6.5

Dummy2 **Pulse plated cavity**

Equator samples

Horizontal plane $200\,\mu m$

EBSD and dislocation density

Spinning vs Electro-Hydraulic Forming

- Low dislocation density in electroformed copper.
- Similar GND density than reference copper OFE before machining.

Outline

1. Current production process/problematic

2.Technical proposal

- 3.Samples characterization
- 4. Dislocation density by EBSD
- 5.Towards first 1.3 GHz cavity

6.Optimization of the process

1.3 GHz Mandrel production

How to produce such an aluminium mandrel?

Machined from bulk aluminium

Mandrel cell turning

Mechanical finishing

Tubes welding/machining

For the moment: Standard machining finishing

Cathode (reduction): Cu²⁺ + 2e⁻ → Cu

Anode (oxidation): $Cu \rightarrow Cu^{2+} + 2^{e-}$

336 hours of plating (Pulse plating + DC plating)

- 2 mm plating at the iris
- 6.4 mm plating at the equator

Aluminum dissolution NaOH 5M

Surface preparation: SUBU

Outline

1. Current production process/problematic

2.Technical proposal

- 3.Samples characterization
- 4. Dislocation density by EBSD
- 5.Towards first 1.3 GHz cavity

6.Optimization of the process

Electroforming process

COMSOL simulations for optimization

Design of secondary anodes and masking

• Solution for uniformity: Secondary anodes positioned at the iris to promote plating, mask at the equator to reduce the deposition.

Design of secondary anodes and masking

Implementation of support

Fabrication

Outline

1. Current production process/problematic

2.Technical proposal

- 3.Samples characterization
- 4. Dislocation density by EBSD
- 5.Towards first 1.3 GHz cavity

6.Optimization of the process

Copper PVD process

Optimization of Cu coating process

- **HiPIMS sputtering:** high peak power densities in short pulses.
- The sputtered material is highly ionized and is accelerated towards substrate thanks to the positive pulse.
- High-quality dense homogeneous films

DCMS

High Power Impulse Magnetron Sputtering

HiPIMS + PP

- Very compact coatings.
- No porosities.

Conclusions

• Cavity lifecycle (production-coating-rinsing-testing-stripping) feasibility has been demonstrated with the electroformed 1.3 GHz cavity.

The main drawback of the electroforming approach is the non-uniform thickness distribution along the cavity.

Solution: secondary anodes and masking to the cavity. The plating time will be reduced by half.

- The Cu PVD layer was optimized by applying HiPIMS.
- Very low dislocation density on the iris and equator of electroformed cavity.

Perspectives

- 1.3 GHz cavity production and validation of the secondary anodes support.
- Optimal surface preparation technique before coating.
- Nb thin film coating using best recipe and RF testing.

- Different mandrels surface state: electroforming on polished mandrels.
 - Diamond turning finishing
 - Electro-polishing of the aluminium mandrels

Thank you for your attention!