Upgrades to the Cornell sample host cavity

This work is supported by Center of Bright Beams from the National Science Foundation under Grant No. PHY-1549132

Thomas Oseroff, Zeming Sun, Matthias Liepe

March 18, 2021

Cornell sample host cavity

Demonstrate improved measurements

Progress on residual resistance issues

• Understand the response of a superconductor to an RF field

- Understand the response of a superconductor to an RF field
- Surface impedance $Z(T, f, H^{RF}) = R + iX$

- Understand the response of a superconductor to an RF field
- Surface impedance $Z(T, f, H^{RF}) = R + iX$
 - Dissipation $\propto \operatorname{Re}\{Z\} = R$

•
$$\Delta f_{resonance} \rightarrow \operatorname{Im}\{Z\} = X$$

- Understand the response of a superconductor to an RF field
- Surface impedance $Z(T, f, H^{RF}) = R + iX$
 - Dissipation $\propto \operatorname{Re}\{Z\} = R$

•
$$\Delta f_{resonance} \rightarrow \operatorname{Im}\{Z\} = X$$

Advantages of flat samples

- Easier machining
- Easier film deposition
- Allows for studying a greater range of interesting samples

Cornell sample host cavity

Calibrated measurement

Calibrated measurement

Sample measurement: Q_0^{sample}

Calibrated measurement

Combine calibration and sample measurements to extract R_{plate}

•
$$R_{avg}^{sample} = \frac{G}{1-\alpha} \left\{ \left(\frac{1}{Q_0^{sample}} - \alpha \frac{1}{Q_0^{calib}} \right) \right\}$$

•
$$\alpha = \frac{\int_{host} |H|^2 dS}{\int_{host} |H|^2 dS + \int_{plate} |H|^2 dS}$$

Extracted sample resistance fractional error

Maximum sample field

Previous systematic problems

- High measurement uncertainty
- Limitations to input power
- Large R_{residual}

Previous systematic problems

- High measurement uncertainty
- Limitations to input power
- Large R_{residual}

Solutions

- Redesign of fundamental power coupler (FPC)
- Transmitted power coupler (TPC)
- Improved furnace hygiene

FPC upgrade

- Less reflection
- Optimized for lower dissipation
- Better mechanical stability

Coaxial resonances

4.5

Frequency (GHz)

192

TE₀₁₂

5.5

5

TE₀₁₁

4

-14

-16

-18

-20 L 3.5

Transmitted power probe

Design considerations

- For both modes
 - $Q_e \approx 10^{13}$

 - No change to H_{pk,host}
 P^{dissipated}_{TPC} < P^{dissipated}_{FPC}
- Physical constraints

Features

- Original
 - Measurement uncertainty
 - H or P dependence?
- Upgraded
 - Smaller variation
 - Reasonable H dependence

Comparing original and upgraded system

Features

- Original
 - Measurement uncertainty
 - H or P dependence?
- Upgraded
 - Smaller variation
 - Reasonable H dependence
 - R vs T

Features

Residual resistance categories

• High
$$R_0 \propto H_{rf}$$

• Low R_0

Features

Residual resistance categories

- High $R_0 \propto H_{rf}$
 - Majority of measurements
 - Trapped flux?

• Low R_0

120° C bake Nb @ 2.0 K & 4 GHz

Attempts to reduce trapped flux

Reduce ambient magnetic field

316 stainless steel -> Ti clamps & silicon bronze threaded rods

ightarrow no significant effect

120° C bake Nb @ 2.0 K & 4 GHz

Attempts to reduce trapped flux

Eliminate thermal currents

 \rightarrow no significant effect

120° C bake Nb @ 2.0 K & 4 GHz

Attempts to reduce trapped flux

- Alter cooling path
- Change cooling rate

 \rightarrow no significant effect

11 / 12

120° C bake Nb @ 2.0 K & 4 GHz

Features

Categorize all measurements

- High $R_0 \propto H_{rf}$
 - Majority of measurements
 - Trapped flux
- Low R_0

120° C bake Nb @ 2.0 K & 4 GHz

Features

Categorize all measurements

- High $R_0 \propto H_{rf}$
 - Majority of measurements
 - Trapped flux
- Low R_0
 - Linked to 800 C bake?
 - Host and/or plate

120° C bake Nb @ 2.0 K & 4 GHz

Features

Categorize all measurements

- High $R_0 \propto H_{rf}$
 - Majority of measurements
 - Trapped flux
- Low R_0
 - Linked to 800 C bake?
 - Host and/or plate
 - Clean furnace run
 - More nitric acid soaks
 - Cover with clean Nb foil in furnace

Conclusion

Better measurements

- Smaller measurement uncertainty
- Full input power range

Residual resistance

- Improved understanding
- Must verify new procedure for maintaining low residual

Ready for sample measurements!

- ullet Not well suited for samples with low surface resistance.... thick A15 X, thick B1 X
 - $\rightarrow\,$ Can verify it is near Nb loss up to 80 mT / quench
 - $ightarrow ~ \sim 10\%$ error for $R^{sample} = R_{Nb}$... SIS 🗸
- Plan to test anti-Q-slope models on lossy samples