

The Development of HiPIMS Multilayer SIS film coatings on Copper for SRF Applications

9th international thin film workshop, 15-18 March 2021

S. Leith¹, J. Fan¹, J. Qiao¹, B. Bai¹, M. Vogel¹, R. Ries², E. Seiler², Y. Li³, D. Tikhonov⁴, E. Chyhyrynets⁵, J. Müller³, S. Keckert⁴, O. Kugeler⁴, C. Pira⁵, B. Butz³, J. Knobloch⁴, X. Jiang¹

¹ Institute of Materials Engineering, University of Siegen, Siegen, Germany

² Institute of Electrical Engineering SAS, Bratislava, Slovakia

³ Micro- and Nanoanalytics Facility, University of Siegen, Siegen, Germany

⁴ HZB Berlin, Germany

⁵ LNL/INFN, Legnaro, Italy

and Innovation Programme under Grant Agreement no. 730871.

EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879 Authors would also like to acknowledge the support provided by European Union's ARIES collaboration H2020 Research

Experimental Outline

- 1. DC MS NbN optimisation
 - DC MS based SIS films
- 2. HiPIMS Nb optimisation
 - HiPIMS Nb + DC MS NbN SIS films
- 3. HiPIMS NbN optimisation
 - HiPIMS SIS films

NbN	
AlN	
Nb	
Cu Substr.	

- Optimised DC MS NbN recipe
 - Highest Hen = 13.0 mT (790)
 - Highest Tc = 16.1 K (899)

DC MS SIS films

- Optimised DC MS NbN recipe
 - Highest Hen = 13.0 mT (790)
 - Highest Tc = 16.1 K (899)
- DC MS SIS film
 - Table rotated during coating
- Poor interface adhesion
- Rough Nb layer

DC MS SIS films

Lehrstuhl für Oberflächen- und Werkstofftechnologie

Intergranular oxygen

S. Leith, 18.03.2021

SIMS Courtesy of Ulrike Koch (Laboratory for Analytical Chemistry, University of Siegen)

DC MS SIS films

Lehrstuhl für Oberflächen- und Werkstofftechnologie

Intergranular oxygen

Sample (NbN)	H _{en} (mT)	Nb T _c (K)	NbN T _c (K)
SIS-1 (120)	64.5	9.4	14.7
SIS-2 (118)	14.5	9.2	14.5
SIS-3 (78)	24.0	9.2	14.0
SIS-4 (147)	26.5	9.4	14.9
Nb	52.0	9.4	15.2

SIMS Courtesy of Ulrike Koch (Laboratory for Analytical Chemistry, University of Siegen)

HiPIMS Nb

Oberflächen- und Werkstofftechnologie

- Surface topography similar for all samples.
 - Damage at high substrate bias (> 150 V) 0

HiPIMS Nb

- Surface topography similar for all samples.
 - Damage at high substrate bias (> 150 V)
- Reduced average surface roughness:
 - Large GB influence

HiPIMS Nb

- Surface topography similar for all samples.
 - Damage at high substrate bias (> 150 V)
- Reduced average surface roughness:
 - o Large GB influence
- Interface significantly improved.
 - 85% reduction in interfacial voids

HiPIMS Nb-Conclusions

Lehrstuhl für Oberflächen- und Werkstofftechnologie

Bulk-like films perform better

 \circ Lower stress, bulk-like $T_{\rm c}$, improved $H_{\rm en}$

- Duty Cycle displays a relatively small influence
 - Specific maximums still observed

HiPIMS Nb-Conclusions

Lehrstuhl für Oberflächen- und Werkstofftechnologie

Bulk-like films perform better

• Lower stress, bulk-like $T_{\rm c}$, improved $H_{\rm en}$

- Duty Cycle displays a relatively small influence
 Specific maximums still observed
- Film Thickness influences

o "Transition zone"

Thank you to G. Rosaz for XRF measurements

HIPIMS Nb + DC MS NbN SIS

- Two SIS film series
 - \circ 4 x Sample 899 recipe (High T_c)
 - \circ 3 x Sample 790 recipe (High H_{en})
- HiPIMS Nb influence on AIN and NbN

HiPIMS Nb + DC MS NbN SIS

- Two SIS film series
 - \circ 4 x Sample 899 recipe (High T_c)
 - 3 x Sample 790 recipe (High H_{en})
- HiPIMS Nb influence on AIN and NbN
- Microstructure and orientation change due to table rotation!

NbN Superconducting performance reliance

• (899) vs. (790)

Sample	H _{en} (mT)	Nb T _c (K)	NbN T _c (K)
1165 (207nm)	39.0	9.3	15.9
1166 (155nm)	38.0	9.3	15.8
1167 (99nm)	34.0	9.3	15.5
1169 (254nm)	33.0	9.3	16.1
1170 (181nm)	61.0	9.3	15.2
1171 (144nm)	61.5	9.4	15
1172 (246nm)	59.0	9.3	15.3
HiPIMS Nb	103.0	9.35	-

NbN Superconducting performance reliance

• (899) vs. (790)

Sample	H _{en} (mT)	Nb T _c (K)	NbN T _c (K)
1165 (207nm)	39.0	9.3	15.9
1166 (155nm)	38.0	9.3	15.8
1167 (99nm)	34.0	9.3	15.5
1169 (254nm)	33.0	9.3	16.1
1170 (181nm)	61.0	9.3	15.2
1171 (144nm)	61.5	9.4	15
1172 (246nm)	59.0	9.3	15.3
HiPIMS Nb	103.0	9.35	-

$H_{\rm en}$ NbN film thickness dependence

HIPIMS Nb + DC MS NbN SIS

- Similar HiPIMS parameters to Nb ٠
- Similar trends to DC MS NbN ٠
- Improved surface roughness and density ٠

- Similar HiPIMS parameters to Nb
- Similar trends to DC MS NbN
- Improved surface roughness and density
- High Bias effects
 - Change of phase (> 60 V)
 - Loss of superconductivity (> 75 V)

Significant superconductivity improvements over DC MS

- Highest $T_c = 16.5 \text{ K}$
- Highest $H_{en} = 30 \text{ mT} (\text{DC MS} = 13 \text{ mT})$
- Ave H_{en} > DC MS Maximum

Interplay between $p_{cath},\,P_{dep}$ and $N_2\%$

- Multiple HiPIMS SIS series
 - AIN 8 + 30 nm and NbN (100 to 200 nm)
 - Pulsing instituted for AIN + NbN
- Oxygen content reduction

Lehrstuhl für Oberflächen- und Werkstofftechnologie

- Multiple HiPIMS SIS series
 - AIN 8 + 30 nm and NbN (100 to 200 nm)
 - Pulsing instituted for AIN + NbN
- Oxygen content reduction
- SIS film morphology dominated by HiPIMS Nb
 NbN "superimposed" on top of Nb + AIN
 - NbN "superimposed" on top of Nb + AIN

SIMS Courtesy of Ulrike Koch (Laboratory for Analytical Chemistry, University of Siegen)

Improved surface roughness and density

- Improved surface roughness and density
- Coherent epitaxial growth of SIS layers

- Improved surface roughness and density
- Coherent epitaxial growth of SIS layers

- Decreased T_c in SIS vs original
- *H*_{en} thickness dependence on recipe
 Cleaner films (HiPIMS) = Thicker layer
- Increased H_{en} for HiPIMS SIS films

 (88 mT vs. 64.5 mT)

- Significant improvements offered by HiPIMS Optimisation possible
- Best DC MS SIS film displays smallest magnetisation loop
- HiPIMS NbN shows more pronounced "dip" but earlier separation.
- Highest H_{en} samples vs. Lowest H_{tr} Measurement in oscillating field required
- Final HiPIMS SIS samples still to be tested

QPR SIS film Coating

QPR test results detailed by D. Tikhonov - 18/03

Thanks for your Attention!

EASITrain – European Advanced Superconductivity Innovation and Training. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) has received funding from the European Union's H2020 Framework Programme under Grant Agreement no. 764879 Authors would also like to acknowledge the support provided by European Union's ARIES collaboration H2020 Research

and Innovation Programme under Grant Agreement no. 730871.

S. Leith, 18.03.2021

Oberflächen- und Werkstofftechnologie

Extra Slides

Cu sample preparation

- OFHC Cu substrates (25 x 25 mm)
- MP + EP (1 hour)
 - Large step edge GB (Max 20 nm)
- $S_q = 2.58 \pm 0.26$ nm
- Polycrystalline, (200) preferred orientation

Optimised Coating:

- $8\% N_2$
- Intermediate Pressure (1.4E-2 mbar) •
- Substrate Bias (75 V) •
- **Increased Cathode Power**
- $T_{\rm c} = 16.1 \text{ K}, H_{en} = 5 \text{ mT}$ ٠
- $S_q = 6.36 \pm 0.42$ nm δ-NbN(111) with small δ'-NbN

Parameter	Value
Cathode Power	300 to 600 W
Deposition Pressure	8x10 ⁻³ - 1.8x10 ⁻² mbar
HiPIMS Pulse Length	80 to 200 µs
HiPIMS Pulse Frequency	800 to 2000 Hz
Duty Cycle (Calculated)	2 to 20 %
Substrate Bias	0 to - 250 V
Substrate Temperature	115 to 290 °C
Film Thickness.	0.91 to 8.10 µm

HiPIMS NbN

Substrate Bias

Nitrogen Percentage

HiPIMS NbN

HiPIMS NbN

- Lattice Parameter dependent on specific deposition parameters. Increases with:
 - Increasing substrate bias
 - Decreasing Pressure
 - Increasing Cathode Power
- Reaches a specific minimum for N_2 % related to phase formation
- Crystallite size increases with:
 - Decreasing cathode power
 - Decreasing N₂%
 - Increasing substrate bias. Except at high values due to phase change.
 - Increasing deposition pressure

Preparatory HiPIMS SIS Coatings

Lehrstuhl für Oberflächen- und Werkstofftechnologie

1296

HiPIMS SIS

QPR Deposition

Recipe

- HiPIMS Nb (~3.8 μm)
 - Sample 1077 recipe
 - 400 W (1000 Hz, 120 μs)
 - 8e⁻³ mbar
- AIN (8 or 24 nm)
 - 3500 W, 6e⁻³ mbar, 100% N₂
 - 3x10° pulse
- HiPIMS NbN (180 nm)
 - Sample 1296 recipe (Highest H_{en})
 - 400 W (1000 Hz, 120 μs)
 - 2.2e⁻² mbar, 10% N₂
 - 56x10° pulses