

Tuning of thin film thickness in SRF cavities

A. Bartkowska, C. Pereira Carlos, T. Richard, <u>G. Rosaz</u>, M. Taborelli

16.03.2021

OUTLINE

- 1. Context
- 2. Experimental Setup
- 3. Proposal / Simulation
- 4. Results
- 5. Outlook

CONTEXT

1st Problematic

Q-slope increases with beta factor decrease

1st Problematic

Q-slope increases with beta factor decrease

→ Biased HiPIMS / Bipolar HiPIMS as solution = layer densification

1st Problematic

Q-slope increases with beta factor decrease

→ Biased HiPIMS / Bipolar HiPIMS as solution
= layer densification

2nd Problematic

Thickness ratio between iris and equator regions

- \rightarrow Peel-off may occur at the iris
- → Long process duration to achieve required thickness at equator

1st Problematic

Q-slope increases with beta factor decrease

→ Biased HiPIMS / Bipolar HiPIMS as solution
= layer densification

2nd Problematic

Thickness ratio between iris and equator regions

- \rightarrow Peel-off may occur at the iris
- → Long process duration to achieve required thickness at equator

EXPERIMENTAL SETUP

Coating setup and samples

Coating setup and samples

Coating setup and samples

DCMS Power supply	Huttinger 3010
HiPIMS Power supply	HighPulse 4006
Bias Power supply	TruPlasma 3018
Average Power	1.3 kW
Bakeout	200C / 48h
Base Pressure	6.10 ⁻¹⁰ mbar
Working gas	Kr
Pressure	2.3.10 ⁻³ mbar
Coating duration	2h

Coating setup and samples

PROPOSAL / SIMULATIONS

16/03/2021

G. Rosaz | 9th TFSRF Workshop - 2021

HiPIMS = highly ionized metallic plasma

How to bring these ions "where we want"?

1st: Can a negative bias contribute to redistribute the ionized species?

- HiPIMS grounded vs Biased HiPIMS trial

HiPIMS grounded

Standard magnet

- HiPIMS grounded
- HiPIMS -75V bias
- Standard magnet

- HiPIMS grounded
- HiPIMS -75V bias
- Standard magnet

No redistribution

Higher coating rate in biased configuration

- HiPIMS grounded
- HiPIMS -75V bias
- Standard magnet

No redistribution

Higher coating rate in biased configuration

NEED TO ACT ON THE IONIZATION REGION

 \rightarrow Increase ion flux at the sheath edge

1st: Can a negative bias contribute to redistribute the ionized species?

- HiPIMS grounded vs Biased HiPIMS trial

2nd: Can we tune the plasma plume profile in order to redistribute the ionized species?

1st: Can a negative bias contribute to redistribute the ionized species?

- HiPIMS grounded vs Biased HiPIMS trial

2nd: Can we tune the plasma plume profile in order to redistribute the ionized species?

Ions trajectories cannot be modified on large scale (too large Larmor radius).
only electric field can act on them (only in the sheath ~mm)

1st: Can a negative bias contribute to redistribute the ionized species?

- HiPIMS grounded vs Biased HiPIMS trial

2nd: Can we tune the plasma plume profile in order to redistribute the ionized species?

- lons trajectories cannot be modified on large scale (too large Larmor radius). only electric field can act on them

- Try to redirect electrons \rightarrow extend and shape the ionization region

- \rightarrow Magnetic profile modification
- \rightarrow Electrons can escape

- \rightarrow Magnetic profile modification
- \rightarrow Electrons can escape

- \rightarrow Magnetic profile modification
- \rightarrow Electrons can escape

Expel the electrons away toward cavity's surface

- \rightarrow Magnetic profile modification
- \rightarrow Electrons can escape

What to expect?

- \rightarrow Magnetic profile modification
- \rightarrow Electrons can escape
- What to expect?
- \rightarrow Spatial redistribution
- \rightarrow Plume of energetic electrons

- \rightarrow Magnetic profile modification
- \rightarrow Electrons can escape
- What to expect?
- \rightarrow Spatial redistribution
- \rightarrow Plume of energetic electrons

Expel the electrons away toward cavity's surface

- \rightarrow Magnetic profile modification
- \rightarrow Electrons can escape

What to expect?

- \rightarrow Spatial redistribution
- \rightarrow Plume of energetic electrons

Expel the electrons away toward cavity's surface

- \rightarrow Magnetic profile modification
- \rightarrow Electrons can escape
- What to expect?
- \rightarrow Spatial redistribution
- \rightarrow Plume of energetic electrons

PIC-MC Plasma simulations (10W)

unbalanced

RESULTS

Does it work?

- **1. Use of unbalanced configuration**
- 2. Biasing of the substrate (-75V)

Does it work?

- **1. Use of unbalanced configuration**
- 2. Biasing of the substrate (-75V)

Redistribution of the profile

Increase of the coating rate at the equator

Summary / Outlook

Thin film thickness can be tuned using

- Biased HiPIMS
- Appropriate magnetic configuration

Enables complex shapes coating

Plasma simulations efficient into predicting the magnetic assembly effect

Magnetic strength and profile effect investigated (to be published)

RF performance to be assessed (ion flux effect)

Thank you for your attention

home.cern