9th International Workshop of Thin Films and New ideas for Pushing the Limits of RF Superconductivity (15-18 March 2021)

Nb₃Sn growth by multilayer sequential sputtering for SRF application

Md Nizam Sayeed, Hani E. Elsayed-Ali (Old Dominion University) Uttar Pudasaini, Charles E. Reece (Jefferson Lab)

Grigory V. Eremeev (Fermilab)

Frank Batten College of Engineering & Technology Old Dominion University: www.eng.odu.edu

Outline

- Research motivation and approach
- Characterization results
- RF surface impedance characterization results
- Cylindrical magnetron for cavity coating

Research motivation

Why Nb₃Sn and why magnetron sputtering?

- Nb cavities are approaching the intrinsic material limit.
- Higher T_c and H_{sh} of Nb₃Sn promise potential cavity operation at higher temperatures and higher E_{acc} .
- Disadvantage- brittle structure and lower thermal conductivity.

NION UN	
ELON C	
1930	

3

Phase	<i>T_c</i> (K)	$H_{sh}\left(\mathrm{mT} ight)$
Nb	9.25	200
Nb ₃ Sn	18.3	400

Research motivation

Why Nb₃Sn and why magnetron sputtering?

Advantages of magnetron sputtering:

- Stoichiometry of Nb and Sn can be controlled.
- Uniform Sn composition throughout the grain can be obtained.
- Relatively less annealing temperature ٠ is required- possible to use in copper cavities.

Critical temperature of Nb₃Sn as a function of atomic Sn content [2].

Old Dominion University

4

Frank Batten College of

Engineering & Technology

Old Dominion University: www.eng.odu.edu

Nb₃Sn by multilayer sequential sputtering

Ar gas

Substrate

Ar⁺

Vacuum pump

- Multiple layers of Nb and Sn sputter sequentially.
- Deposition rate: 1 Å/s.
- Sputtering pressure: 3 mTorr 20 SCCM.
- Substrate rotation: 30 rpm.
- Multilayers annealed: 850- 1200 °C, 1- 12 h.

Nb₃Sn by multilayer sequential sputtering

- Parameters to optimize
 - Effect of annealing temperature and time,
 - Effect of thickness,
 - Effect of substrate temperature,
 - Effect of annealing ramp rate.

Effect of annealing temperature

- 1 μ m thick multilayer of Nb (20 nm thick) and Sn (10 nm thick) deposited.
- Annealed temperature: 850, 950, 1000, 1100, and 1200 °C for 3 h.

Structural properties

Figure: X-ray diffraction pattern of as-deposited and annealed films.

Jefferson Lab **Fermilab**

Effect of annealing temperature

Effect of annealing temperature

Frank Batten College of Engineering & Technology Old Dominion University: www.eng.odu.edu Jefferson Lab

Fermilab

Nb:Sn 10 nm:10 nm

Nb:Sn 10 nm:5 nm

Nb:Sn 20 nm:10 nm

Nb:Sn 20 nm:10 nm

Nb:Sn 30 nm:10 nm

Nb:Sn 50 nm:25 nm

Nb:Sn 40 nm:10 nm

Nb:Sn 200 nm:100 nm

Frank Batten College of Engineering & Technology Old Dominion University: www.eng.odu.edu

M N Sayeed et al. 2020 IOP Conf. Ser.: Mater. Sci. Eng. 756 012014 Applied Research Center **Old Dominion University**

Effect of Nb buffer layer thickness

No buffer layer

20 nm buffer layer

100 nm buffer layer

Old Dominion University

12

Figure: SEM images of the annealed films with different buffer layer thicknesses.

Frank Batten College of Engineering & Technology Old Dominion University: www.eng.odu.edu

M.N. Sayeed et al. https://doi.org/10.18429/JACoW-SRF2019-TUP079

Effect of substrate temperature (S.T.)

As-deposited – S.T. room temperature

Frank Batten College of Engineering & Technology Old Dominion University: www.eng.odu.edu

Applied Research Center

Annealed at 950 °C \times 3 h- S.T. room temperature

Engineering & Technology Old Dominion University: www.eng.odu.edu

Applied Research Center Old Dominion University

As-deposited- S.T. 250 °C

Frank Batten College of Engineering & Technology Old Dominion University: www.eng.odu.edu

Annealed at 950 °C \times 3 h- S.T. 250 °C

Frank Batten College of Engineering & Technology Old Dominion University: www.eng.odu.edu

RF surface resistance measurement

Residual resistance: $3.87 \pm 0.28 \text{ m}\Omega$ Gap: $2.52 \pm 0.96 \text{ meV}$

Frank Batten College of Engineering & Technology Old Dominion University: www.eng.odu.edu

M.N. Sayeed et al. IEEE Trans. on Appl. Supercond. 31 5 pp. 1-4

Applied Research Center

Critical temperature: 17.20 K

Old Dominion University

18

Construction of cylindrical magnetron

Summary

- Superconducting Nb₃Sn with a T_c up to 17.93 K have been achieved.
- Film morphology modified with niobium buffer layer and increased substrate temperature.
- Uniform Sn composition through the whole surface after annealing.
- RF superconducting transition at 17.2 K.
- Problems to solve- Sn loss due to evaporation.

Acknowledgement

- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics.
- Drs. Michael Kelley, Anne-Marie Valente-Feliciano, Gianluigi Ciovati, Pashupati Dhakal, Jae-Yel Lee.
- Jefferson Lab technical staffs- Peter Owen, Pete Kushnick, Joshua Spradlin.

THANK YOU!

