

The 9th International Workshop on Thin films and new ideas for Pushing the limits of RF Superconductivity *15-18 March 2021 - Virtual Edition*

Cristian Pira

Nb₃Sn films via liquid tin diffusion for SRF application

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro

Work supported by the INFN CSNV experiment TEFEN

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871.

Nb₃Sn on Cu - Motivation

High performance of Nb₃Sn @ 4.2 K \rightarrow cooling by **cryocooler**

High thermal conductivity substrate is preferred

Courtesy of G. Ciovati, JLab

Nb₃Sn @ LNL - Motivation

Goal of I.FAST collaboration \rightarrow Produce a Nb₃Sn coated cavity on Cu

Request \rightarrow A Nb₃Sn target for cylindrical configuration

Idea \rightarrow Single-use Nb₃Sn target by Liquid Tin Diffusion (LTD)

LTD Motivation

Already explored for SRF @LNL (from 2005 to 2010)

Simple process

Possibility to adopt solutions developed for Tin Vapour Diffusion

Possibility to **grow thick layer** of Nb₃Sn (> 10 μ m)

Liquid Tin Diffusion process set-up

S. M. Deambrosis et al., "A15 superconductors: An alternative to niobium for RF cavities," Physica C, 2006

thinfilms and NEW IDEAS for SRF

Results (LNL 2006)

S. M. Deambrosis et al., "A15 superconductors: An alternative to niobium for RF cavities," Physica C, 2006 S. M. Deambrosis, "SRF2009

Poor performance on 6 GHz cavity

and NEW IDEAS for SRF

Results (LNL 2006)

Nb₃Sn films via liquid tin diffusion for SRF application

cristian.pira@Inl.infn.it

Coating thickness (old process, 2006)

Sn concentration profile by EDS

thinfilms

Increasing coating thickness (old process, 2021)

26 µm thick!!! → Thickness can be modulated

Nb₃Sn films via liquid tin diffusion for SRF application

cristian.pira@Inl.infn.it

XRD (old process, 2021)

Presence of **unreacted Sn** and Nb_6Sn_5 spurious phase

Morphology (old process, 2021)

Same process, different substrate

Morphology (old process, 2021)

(Already known in Vapor Diffusion)

Sn 64% Nb 36%

Nb₃Sn films via liquid tin diffusion for SRF application

HV

Sn 37% Nb 63%

Sn 23% Nb 77%

Analogous to Vapor Diffusion:

 Added an initial Nucleation step (without SnCl2) @ 600 °C for 3 h

NOTE:

time process steps longer than vapor diffusion due to lower T

Analogous to Vapor Diffusion:

- Added an initial Nucleation step (without SnCl2) @ 600 °C for 3 h
- Added a Vapor coating step @ 1000 °C for 2 h

NOTE:

time process steps longer than vapor diffusion due to lower T

Nb₃Sn films via liquid tin diffusion for SRF application

cristian.pira@nl.infn.it

Analogous to Vapor Diffusion:

- Added an initial Nucleation step (without SnCl2) @ 600 °C for 3 h
- Added a Vapor coating step @ 1000 °C for 2 h

NOTE:

time process steps longer than vapor diffusion due to lower T

Analogous to Vapor Diffusion:

- Added an initial Nucleation step (without SnCl2) @ 600 °C for 3 h
- Added a Vapor coating step @ 1000 °C for 2 h
- During the Annealing step Temperature decreased to ~ 920-940 °C

NOTE:

time process steps longer than vapor diffusion due to lower T

and NEW IDEAS for

Nb₃Sn films via liquid tin diffusion for SRF application

NFN

and NEW IDEAS for SRF

Chromium contamination

• A problem to face and solve

Dipping time - thickness relationship

7 hours of dipping \rightarrow 35 μ m

Dipping time - thickness relationship

We suppose that the Nb₃Sn growing rate by dipping is related to the Sn diffusion in Nb

If it is true, from the Fick's laws of diffusion we have that:

 $x^2 = kt$

t: dipping time

x: Nb₃Sn thickness

k: a costant that takes in account the diffusion coefficient D

Good agreement with the experimental data

100 μ m \rightarrow ~ 63 hours of dipping! 24 hours of dipping \rightarrow ~ 62 μ m

 $x^2(\mu m^2) = 157 \cdot t(h) + 130$

 $R^2 = 0.9983$

Proof of concept

- Preparation of a 1" target (30 microns thick)
- Coating on quartz samples
 - I = 0.1 A (5 mA/cm²) t = 30 min T = 750 °C $P_{base} = 2 \cdot 10^5$ mbar
- Process stopped when V decreased

Results - Target erosion

Coating thickness on samples: 1.2 μm

Nb₃Sn films via liquid tin diffusion for SRF application

cristian.pira@Inl.infn.it

Results target

Sputtered samples

Strange behaviour R vs T \rightarrow not possible measure Tc No optimized deposition conditions

Nb₃Sn films via liquid tin diffusion for SRF application

Nb 74% Sn 26%

Sputtered sample XRD

XRD shows Nb_3Sn phase Presence of **unreacted Sn** and/or Nb_6Sn_5 spurious phase

How does the new process work in RF?

How does the new process work in RF?

INFN

thinfilms

6 GHz cavity #1 (only geometry test)

First test in a broken cavity to test possible geometry effect

No tin drops!

Very good surface

5-10 micron Nb₃Sn thickness

Cr-Ni contamination in 6 GHz cavity

External Surface of a 6 GHz elliptical cavity

Nb 42% Sn 13% Cr 38% Ni 7.2%

Inner Surface of a 6 GHz elliptical cavity

The cavity geometry preserves the inner surface from contamination

6 GHz cavity #1 (only geometry test)

Position [°20] (Copper (Cu))

6 GHz cavity #2

Same process of cavity #1

Problem with upper furnace: annealing at 920 °C instead of 940 °C

45 h of annealing instead of 15 h

Metallic tin outside

Dark spots in the inner surface

(signs of tin excess)

Tc and RF Test

Poor RF performances comparable to old process

(Sn excess? Cr-Ni contamination? Low T? Thick film?)

Conclusions

- Possibility to grow thick film ightarrow target production
- Good Stechiometry
- Proof of concept passed *(sputtering process must be optimized)*
- Cr-Ni contamination to solve (Nb screen or New Nb chamber)
- Poor SRF performance (Sn excess? Cr-Ni contamination? Low T? Thick film?)

Thank you for the attention!

Material Science and Technology Service for Nuclear Physics crew

Special thanks to Matteo Zanierato, Vanessa Garcia, Eduard Chyhyrynets, Roberta Caforio, Fabrizio Stivanello

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro

