

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Study of Alternative Materials for Next Generation SRF Cavities at Cornell University

Zeming Sun, Thomas Oseroff, Ryan D. Porter, Katrina Howard, Matthias U. Liepe (CLASSE)

Zhaslan Baraissov, Nathan Sitaraman, Michelle Kelly, James Sethna, Tomas Arias, David Muller (Cornell Physics)

Kevin D. Dobson (Institute of Energy Conversion)

Xiaoyu Deng (UVA)

Aine Connolly, Michael O. Thompson (Cornell MSE)

Thin film workshop 03/2021

Alternative materials

Nb3Sn

- ✓ Doubled superheating field: ~400 mT vs. Nb: ~200 mT
- ✓ Increased operation temperature: 2 K to 4 K

NbTiN & NbTiN/AlN/Nb SIS structures

> MgB₂

V₃Si

Alternative approaches

- Vapor diffusion
- Electroplating
- Chemical vapor deposition
- Sputtering
- Plasma-enhanced ALD
- Reactive vapor deposition

Nb₃Sn generation through thermal conversion of electroplated Sn films on Nb substrate

Issues in Nb₃Sn vapor diffusion

units)

(arb.

Ē

X

• Large surface roughness

Non-uniform nucleation events (Ryan Porter, et al., LINAC'19)

Source of surface roughness: large variation in grains (Jaeyel Lee, et al., Supercond. Sci. Technol., 2018)

• Impact on the RF performance

• Sn depletion region/stoichiometry

(Ryan Porter, et al., LINAC'19)

arXiv:1912.07576 [cond-mat.supr-con])
Impact on the RF performance

- Pre-deposition of a uniform smooth Sn layer on Nb
- Thermal conversion to Nb₃Sn
- Advantages:
 - ✓ Promote uniform distribution of nucleation to lower the surface roughness
 - ✓ Excess Sn supply to satisfy the kinetic requirement for Nb₃Sn stoichiometry
 - ✓ Possible application of Nb₃Sn on Cu cavity (better heat conduction, low cost)

Challenges

- ✓ Low lateral surface diffusion
- ✓ Dendrite formation --- Large initial surface roughness
- ✓ Poor adhesion at Sn/Nb interface --- Peel-off issue
- Control of impurity concentration
- Methods
 - ✓ A three-electrode deposition system
 - Optimization of temperature, solution chemistry, plating potential, ph-values, and stirring conditions

• Uniform surface morphology (some embedded grains)

• Low surface roughness on the flat region (Ra= 65 nm, AFM)

 Cross-section SEM shows smooth surface and thickness of ~3 um.

Comparison between vapor diffused sample and plated-Sn converted sample

AFM image of plated-Sn converted Nb3Sn

✓ 4 – 5 times reduction in surface roughness

	Ra [nm]	Rq [nm]	Rz [nm]
Starting Nb surface	70	95	2305
Electroplated Sn films	65	80	700
Thermally converted Nb ₃ Sn films	60	70	650
Vapor diffused Nb ₃ Sn films	~300	~300	~2000

* Recently, Fermi Lab and KEK both report ~100 nm Ra on their new "shiny" coatings

Vapor diffused Nb3Sn

Plated-Sn converted Nb3Sn

9

Stoichiometric Nb₃Sn

• Uniform film, relative small grain size

 Stoichiometric Nb₃Sn with Tc of 18 K and low concentration of impurity (O may be a concern)

 Cross-section SEM shows smooth surface and 2.4 um thickness

Ongoing: Atomic imaging and analysis

Cross-sectional STEM-EWPC

Multiple grains in the depth direction

[111] Nb₃Sn

- Sub- angstrom resolution
- Accurate composition and strain mapping

Zhaslan Baraissov

Prof. David A. Muller

Ongoing: Composition and strain mapping

- Plated-Sn converted Nb₃Sn vs. vapor diffused Nb₃Sn
- Preliminary results from vapor diffused Nb₃Sn

Counts

Zhaslan Baraissov

Prof. David A. Muller

Counts

Plating test on outer surface

Plating on inner surface Before plating After plating

Sputtered Nb₃Sn and V₃Si

Katrina Howard

- Sputtering deposition system at Cornell Center for Materials Research (CCMR)
 - DC power
 - Bulk Nb₃Sn target
- Sample variables
 - 100 nm Nb₃Sn and V₃Sn films on Nb substrate
 - ✓ Rotating stage at room temperature
 - 2 um Nb₃Sn and V₃Sn films on Nb substrate
 - ✓ Rotating stage at mystery temperature
 - 300 nm Nb₃Sn and V₃Sn films on Cu substrate
 - ✓ Heated stage at 550 C
- Furnace annealing
 - ➢ 600 C, 700 C, 800 C, 950 C for 6 h

Image source: http://www.semicore.com/ what-is-sputtering

100 nm Nb₃Sn on Nb (room temp) SEM

17

Sn/Si Percentage vs Temperature

- Relative percentage ✓ Sn vs. Nb% ✓ Si vs. V%
- **Observe significant Sn/Si loss** expect 2 um V₃Si samples
- 300 nm sample results were calibrated according to electron penetration depth and film thickness

Plasma-enhanced atomic layer deposited NbTiN/Nb vs. NbTiN/AlN/Nb SIS structure

Sample information and surface resistance

Samples obtained from Veeco-CNT

100 nm NbTiN 2 nm AlN Bulk Nb

• Surface resistance

- Measured by Cornell sample host
- Observed the different behaviors between two structures

"Upgrades to the Cornell sample host cavity", Thomas Oseroff, THU 9 am EST

XPS surface profiling

- X-ray photoelectron spectroscopy
- Relative peak intensity determines element concentration
- Observe a Nb concentration gradient as a function of depth
- Ti and N concentrations are constant

- Provided overview of alternative materials study at Cornell
- Demonstrated stoichiometric Nb₃Sn with low surface roughness via Sn electrochemical deposition and thermal conversion
- Achieved recrystallization via annealing of sputtered Nb₃Sn and V₃Si
- Observed Nb deficiency as a function of depth in NbTiN/AlN/Nb SIS structure

Acknowledgements

- This work is supported by Center of Bright Beams from the National Science Foundation under Grant No. PHY-1549132.
- This work made use of the Cornell Center for Materials Research Shared Facilities which are supported through the NSF MRSEC program (DMR-1719875).
- This work was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (Grant NNCI-2025233).
- Thank M. Sowa (Veeco-CNT) for providing the SIS samples.

Thank you for your attention!