GlueX-II and JLab Eta Factory (JEF) PAC 48 Jeopardy

September 25, 2020

Representing the GlueX Collaboration (L. Gan, Z. Papandreou, M. Shepherd, A. Somov, J. Stevens, S. Taylor)

The Proposals

- **GlueX-II**: a extension of the GlueX spectroscopy program at high intensity (E12-13-003) and with enhanced particle identification (E12-12-002)
- JEF: a focus on rare and forbidden decays of η^(*) mesons that is enabled by a high-resolution upgrade to the forward calorimeter
- PAC approved JEF to run concurrently with GlueX-II

Summer 2020

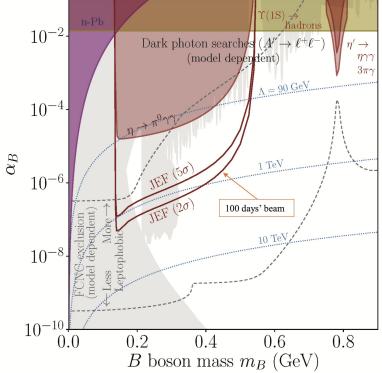
		Commissioning		Production		/
Topic	Proposal Number	Approved	Completed	Approved	Complet	ed
GlueX II with DIRC	E12-12-002	20	14	200	38	+22 (estimated)
GlueX II	E12-13-003	0	0	200	38	+22 (estimated)
JEF	E12-12-002A	0	0	100	0	
Total Unique	-	20	14	200	38	+22 (estimated)

π⁻p→π⁺π⁻π⁻p

GlueX Goals and Tools $\underline{\times}10^{6}$ Events / (5 MeV/c²) $a_2(1320)$ 0.4 $a_1(1260)$ 0.3 Search for a spectrum of hybrid mesons using amplitude analysis π₂(1670) negative parity positive parity exotics 0.2 3000 0.1 2500 8.5 1.5 2.5 2 $m_{3\pi}$ [GeV/ c^2] 2^{+-} 4^{++} 3^{++} $\times 10^5$ $0.100 < t' < 0.113 \, (\text{GeV}/c)^2$ 2.52000 2^{-+} m/MeV events / $(20 \text{ MeV}/c^2)$ 1^{-+} 0^{-+} 2.0 2^{++} 2^{-+} 3++ π₁(1600) 1500 1.5lightest hybrids 2^{++} 0⁻⁺, 1⁻⁺, 2⁻⁺, 1⁻⁻ of 1.0 1^{++} Number 1000 $m_{\pi} = 391 \,\mathrm{MeV}$ n' =0.5 $24^3 \times 128$ 0.0isoscalar 0.51.0 1.52.02.5n $m_{3\pi} \, ({\rm GeV}/c^2)$ 500 isovector COMPASS results reviewed in: B. Ketzer, B. Grube, and D. Ryabchikov, 0^{--} I.I. Dudek et al., PRD 88, 094505 (2013) PPNP 113, 103755 (2020).

Key Physics Objectives

- **GlueX-II:** extend the hadron spectroscopy program of the GlueX experiment
 - \circ ~ improved statistical precision in key hybrid-search final states like $\eta^\prime\pi$
 - improved purity in search for mesons and baryons containing strange quarks
 - a high-statistics multipurpose data set enables a broad physics program
 - discover and measure the quark flavor content of isoscalar hybrid mesons, compare with predictions from QCD
 - explore the spectrum of doubly-strange baryons
 - opportunistic physics, *e.g.*, J/ψ production [GlueX, PRL 123, 072001 (2019)]
- JEF: strong interaction and beyond the Standard Model physics enabled by access to rare neutral decays of η and η' mesons
 - precision determination of light quark mass ratio
 - validation of chiral perturbation theory
 - search for sub-GeV dark matter
 - \circ search for new *C*-violating *P*-conserving processes, *e.g.*, η→π⁰e⁺e⁻, η→3γ

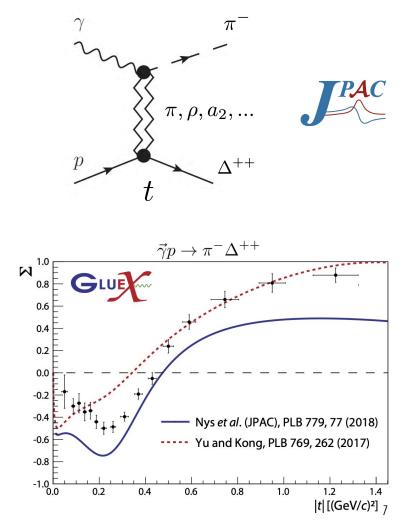

Scientific Importance

"Is there any new information that would affect the scientific importance or impact of the Experiment since it was proposed?"

- GlueX-II
 - new results from JPAC + COMPASS and JPAC + Crystal Barrel provide a consistent picture of an isovector exotic hybrid $\pi_1(1600)$ coupling to $\eta(')\pi$: confirming in photoproduction and searching for the spectrum of hybrids is critical
 - theory development continues to mature: lattice results on couplings and validation of OZI-rule; enhanced modeling of photoproduction based on GlueX results
- JEF
 - laboratory detection of dark matter remains one of the most elusive and important goals of particle physics: JEF will extend this search in unique ways
 - while other experiments may have comparable statistics, JEF remains unique in η production kinematics, which is a critical aspect of background reduction in key rare channels like $\eta \rightarrow \pi^0 \gamma \gamma$

Physics Beyond the Standard Model

- Model space for sub-GeV dark continues to be refined and expanded -- JEF will search for a variety of dark matter candidates:
 - leptophobic dark vector boson
 - dark photons or "leptophilic vector bosons"
 - hadrophilic scalar particles
 - axion-like light pseudoscalars
- DM search strategy: resolve narrow structures in invariant mass spectra in the decays
 - $\circ \quad \eta \rightarrow \pi^0 \gamma \gamma, e^+ e^- \gamma, \pi^0 e^+ e^-, 3\pi, \pi \pi \gamma \gamma, \pi \pi e^+ e^-$
 - $\circ \quad \eta' \rightarrow \pi^0 \gamma \gamma, \, \pi^+ \pi^- \pi^0 \gamma, \, e^+ e^- \gamma, \, 3\pi, \, \eta \pi \pi, \, \pi \pi \gamma \gamma, \, \pi \pi e^+ e^-$
- Additional thrust: search for *C*-violating η decays
- Requirement: high-resolution and high-granularity calorimeter



Reaction Phenomenology

Initial GlueX results for beam asymmetry constrain photoproduction models

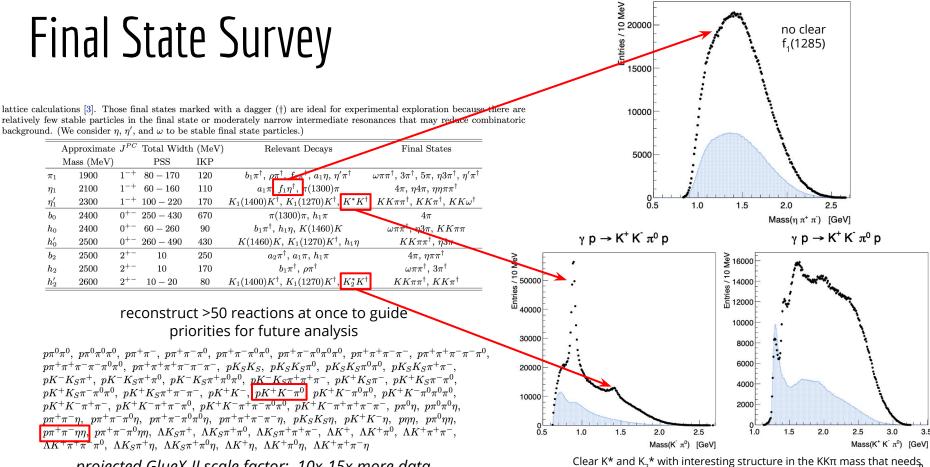
- γp→(π⁰,η,η')p [*PRC 95, 042201 (2017); PRC 100, 052201 (2019)*]
- γp→K⁺Σ [*PRC 101, 065206 (2020)*]
- γp→π⁻Δ⁺⁺ [*arXiv:2009.07326*]

Production mechanism of mesons depends on momentum transfer \rightarrow high statistics is needed to extract resonance production in bins of *t*

Final State Survey

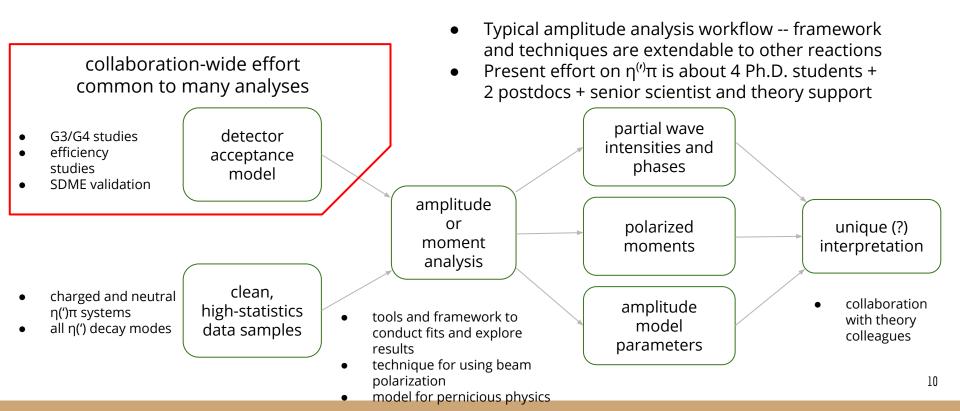
Table from the GlueX-II proposal to PAC 42.

lattice calculations [3]. Those final states marked with a dagger (†) are ideal for experimental exploration because there are relatively few stable particles in the final state or moderately narrow intermediate resonances that may reduce combinatoric background. (We consider η , η' , and ω to be stable final state particles.)


	Approximate	J^{PC}	Total Widt	th (MeV)	Relevant Decays	Final States
	Mass (MeV)		PSS	IKP		
π_1	1900	1^{-+}	80 - 170	120	$b_1\pi^\dagger, ho\pi^\dagger,f_1\pi^\dagger,a_1\eta,\eta^\prime\pi^\dagger$	$\omega\pi\pi^{\dagger},3\pi^{\dagger},5\pi,\eta3\pi^{\dagger},\eta^{\prime}\pi^{\dagger}$
η_1	2100	1^{-+}	60 - 160	110	$a_1\pi, {f_1\eta^\dagger}, \pi(1300)\pi_{}$	$4\pi, \eta 4\pi, \eta \eta \pi \pi^{\dagger}$
η_1'	2300	1^{-+}	100-220	170	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K^*K^{\dagger}$	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}, KK\omega^{\dagger}$
b_0	2400	0^{+-}	250-430	670	$\pi(1300)\pi, h_1\pi$	4π
h_0	2400	0^{+-}	60 - 260	90	$b_1\pi^\dagger,h_1\eta,K(1460)K$	$\omega\pi\pi^{\dagger},\eta3\pi,KK\pi\pi$
h_0'	2500	0^{+-}	260 - 490	430	$K(1460)K,K_1(1270)K^\dagger,h_1\eta$	$KK\pi\pi^\dagger,\eta3\pi$
b_2	2500	2^{+-}	10	250	$a_2\pi^\dagger,a_1\pi,h_1\pi$	$4\pi,\eta\pi\pi^{\dagger}$
h_2	2500	2^{+-}	10	170	$b_1\pi^\dagger,\ ho\pi^\dagger$	$\omega\pi\pi^{\dagger},3\pi^{\dagger}$
h_2'	2600	2^{+-}	10 - 20	80	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K_2^*K^{\dagger}$	$KK\pi\pi$, $KK\pi^{\dagger}$

NB: new results from HadSpec on exotic π_1 decays in lattice QCD just this week: arXiv:2009.10034

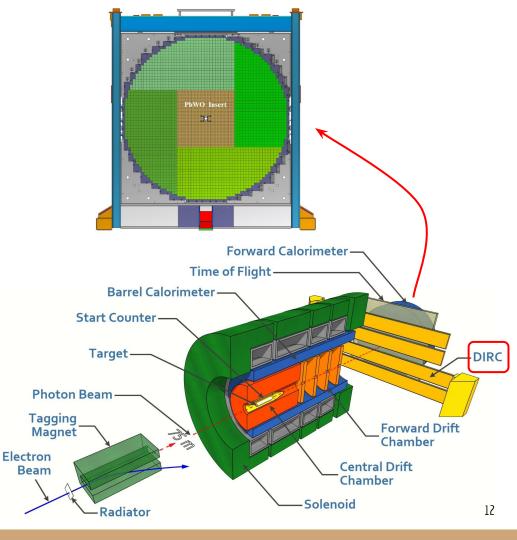
 $\gamma p \rightarrow \eta \eta \pi^+ \pi^- p$


further analysis.

3.5

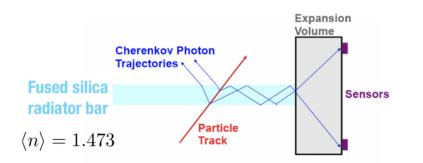
projected GlueX-II scale factor: 10x-15x more data

A strategy for exotic hybrid searches in $\eta^{\prime\prime}\pi$

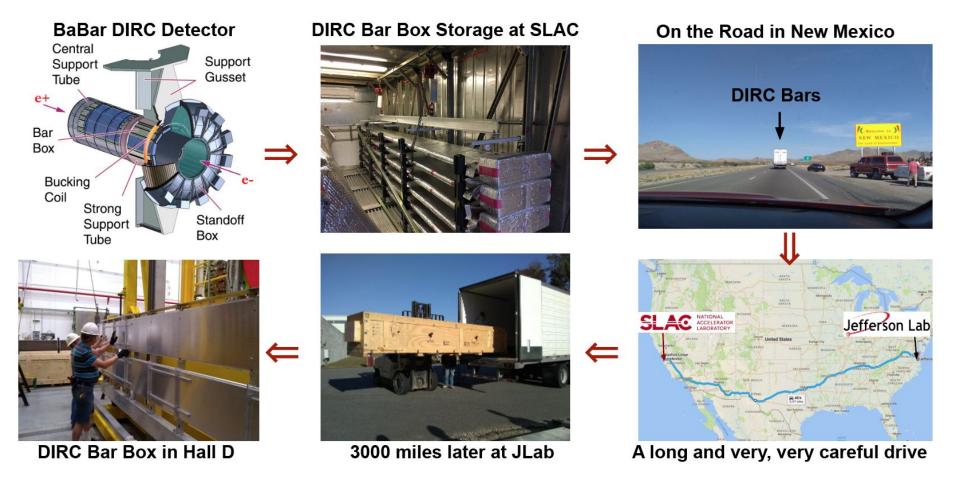


Summary of Motivation and Analysis Readiness

- The motivation for the GlueX-II and JEF programs is as strong if not stronger than it was when these initiatives were developed
 - convergence of data + phenomenology + lattice QCD: key contributions from GlueX
 - physics beyond the Standard Model with JEF: direct searches for dark matter and new C-violating processes while constraining low-energy strong interaction physics
- The GlueX-II and JEF programs use all existing analysis infrastructure that is supported, maintained, and organized by the GlueX Collaboration
 - detector and analysis complexity requires a standardized approach
 - workflow that is scalable to tens of PB of raw data and reconstruction tasks that consume well over 100M CPU-hours
 - years (decades?) of effort invested in software and data analysis technology
 - robust multi-threaded analysis framework; offsite HPC data reconstruction;
 MC simulation on the Open Science Grid and Compute Canada; standardized event selection and understanding of systematic uncertainties; GPU-accelerated amplitude analysis; detector specific calibration and data quality monitoring techniques; ...
 - strong partnership with JPAC and theory community

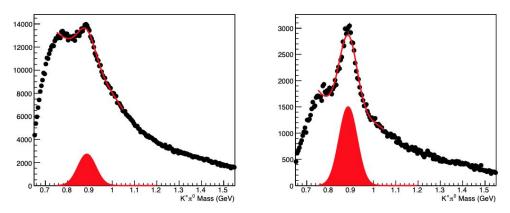

Detector upgrades enhance discovery potential

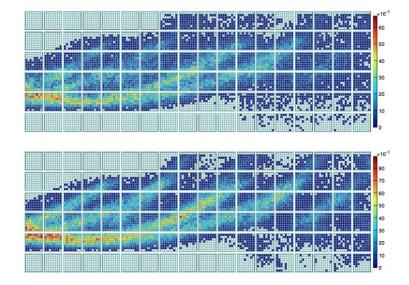
Hall D beamline, baseline GlueX detector, and reconstruction performance is documented in arXiv:2005.14272 (submitted to Nuclear Instruments and Methods).



A DIRC for GlueX-II

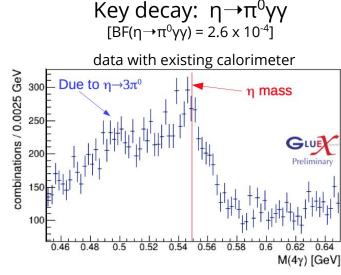
- Goal: $3\sigma \pi/K$ separation up to 3.7 GeV/c
- Use ¹/₃ of BaBar DIRC fused silica radiators
- New optical camera and front-end readout based on Multi-Anode PMTs (used in Hall B)
- Project cost: \$1.8M
- Installation completed in 2019; commissioning now underway

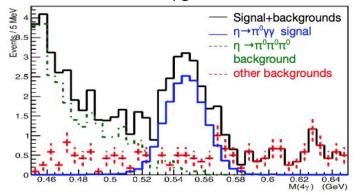

5-m long "bar box" from BaBar four boxes are used in GlueX design SKIN (twelve radiator bars in each box) **PMT** Dark Box Top view of the "optical box" Enclosure two bar boxes are filled with distilled inserted into each water of two optical boxes in the GlueX design. DO **DIRC Bar** LED diffuse


We moved one bar box first in November 2017, and then repeated the entire process, moving the remaining three boxes in one trip in May 2018.

DIRC Performance

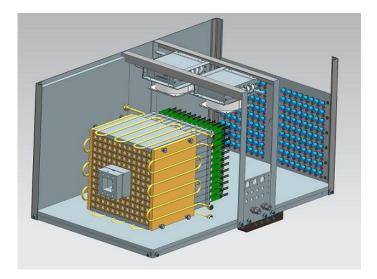
- Design performance achieved in some regions of phase space
- Anticipate that high-statistics data acquired in 2020 will be essential in refining reconstruction and calibration to maximize performance

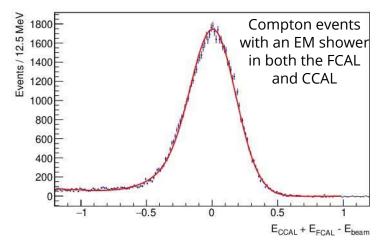

Preliminary: improved *K** purity (right vs. left) by using DIRC to identify the charged kaon (no kinematic fitting)


DIRC Cherenkov photon occupancy on the MAPMT plane for π^{\pm} tracks in data (top) and GEANT simulation (bottom).

JEF Calorimeter Upgrade

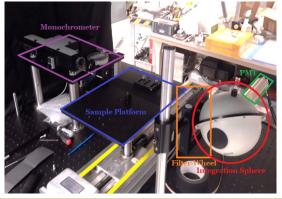
- Calorimeter insert key features
 - factor of 2 improvement in both energy and position resolution
 - factor of 4 more granularity
 - factor of 10 more radiation resistance
 - improved angular coverage near beam hole
- Goal: 50 x 50 array of 2 cm x 2 cm x 20 cm PbWO₄ crystals
 - external funding (via NSF MRI) pending
- Procurements underway for 1600 modules
 - 1000 crystals ordered; 200 delivered; QA ongoing
 - two vendors: CRYTUR and SICCAS
 - 500 Hamamatsu R4125 PMTs delivered so far
 - readout electronics and high voltage for 1600 channels has been ordered




simulation with upgraded calorimeter

PbWO₄ Experience

- Insert for JEF informed by construction and operation of the Hall B Hybrid Calorimeter
- In collaboration with Hall C (NPS) we built and successfully operated a "Compton Calorimeter" (CCAL) for Spring 2019 PrimEx-η run in Hall D
 - 140 PbWO₄+PMT modules of the same design
 - important for prototyping active PMT base design
 - observe clean Compton events
 - comparable resolution to Hall B HyCal
- Continued testing of modules in Hall D throughout recent runs
 - \circ using energy-tagged e⁺ and e⁻

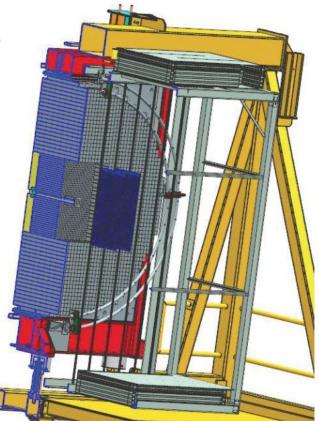

17

Testing of PbWO₄ Crystals

checking dimensions of crystals

light transmission measurement

light yield measurement with radioactive source



full module testing using the Hall D pair spectrometer

Fabrication and Installation Plans

- Mass production of modules expected to begin soon
 - module mechanical design is complete
 - finalizing PMT base design
- Finalizing engineering design for frame
 - stacking procedure and alignment
 - cable management and dark room
 - water cooling system
 - beam hole support
- Anticipate that modules will be ready for installation in 2023
- Planned installation duration: 6 months

from Tim Whitlatch

Summary

- GlueX-II and JEF expand the initial baseline GlueX physics program
 - spectroscopy through decays to strange particles
 - enhanced program of searching for physics beyond the Stand Model
- Key detector upgrades completed and underway
 - successful installation of DIRC to provide enhanced kaon identification
 - $\circ~$ beginning the construction phase of a high-resolution calorimeter insert to enable new studies of $\eta(\prime)$ meson decay
 - best estimate: completion of calorimeter upgrade in 2023
 - together: over a decade of R&D, design, and construction effort at a cost of several million dollars
- About 60 of the 200 approved PAC days are completed as of this week
 - request: complete the proposed running for the two programs as approved by the PAC
 - we will submit a request to the PAC for additional beam time as necessary to achieve the scientific objectives of the GlueX-II and JEF programs