Tracking Detector Requirements for Heavy Flavor Measurements at EIC

Xin Dong (LBNL) Yuanjing Ji (LBNL/USTC) Matthew Kelsey (LBNL) Sooraj Radhakrishnan (KSU/LBNL) Nu Xu (LBNL)

Courtesy of Rey Cruz Torres

Heavy Flavor to Probe Gluon Dynamics at EIC

- EIC is a machine for precision investigation of gluon dynamics in nucleon/nucleus
- Heavy flavor in NC channel sensitive probe to initial gluons

- Inclusive heavy flavor measurement in e+p/A to constrain gluon (n)PDF, particularly at high x region
- *DD* pair reconstruction to access gluon TMDs
- Heavy flavor hadron (**D**, Λ_c etc.) in e+p/A for *hadronization* and CNM effect
- Heavy flavor A_{LL} for gluon spin contribution
- Quarkonia threshold production for understanding proton mass

Physics Interests Utilizing Heavy Flavor Probes

Gluon (n)PDF

Gluon TMDs

Hadronization/CNM

BERKELEY LAB

Kinematic Distributions

<u>e + p 18 x 275 PYTHIA 6.4</u>

n n n n n n

BERKELEY LAB

lmì

Kinematic Distributions

Fast Simulation w/ Default Detector Parameters

• Charm and bottom reconstruction using fast simulation smearing of PYTHIA 6.4 output

- Momentum and pointing resolutions taken from detector matrix page as baseline
 - central transverse pointing resolution extends to $|\eta| < 3$

BERKELEY LAB

Topological Reconstruction of Heavy Flavor Decays

SVT@EIC Workshop 9/2-9/4, 2020

BERKELEY LAB

Impact of Pointing Resolution on D⁰ Significance

- vertex res. assumed to be 20 μm

Comparison between Different Scenarios

Full All-Si Detector Simulation in Fun4All

BERKELEY LAB

Vertex Resolution

Full Simulation $Q^2>1$ X

.....

PV Fitter from Fast Simulation

- Vertex res: $\sigma_{X,Y} \sim 20 \mu m$ at <Mult> ~ 5
- Reproduced by both full and fast simulation studies

Validation of Fast Simulation w/ Fun4All

- D⁰ signal significance improved by cutting on topological variables
 - <u>https://indico.bnl.gov/event/8494/contributions/</u> <u>37480/attachments/28030/43019/</u> <u>EIC_HFJETYRWG_SR_2.pdf</u>

Good agreement at η in [-1,1] (same for all η windows)

K-

Fast simulation reproduces all topological distributions !

Validation of Fast Simulation w/ Fun4All

Fast simulation reproduces the D⁰ efficiency in full simulation!

$D\overline{D}$ Pair - Probe Gluon TMDs

BERKELEY LAB

Charm hadron pair in transverse polarized exp. - gluon Sivers functions

Charm hadron pair in unpolarized exp. - linearly polarized TMD function

Projection on Gluon Sivers Function

BERKELEY L

Impact of A Larger Beam-pipe

Benefits of Ultra-thin Fine-pitch MAPS Detector

- $D - \overline{D}$ pair reconstruction

- ► res. 30->20 μm
 - significance improved by 20%
 - S/B ratio improved by x2.5

- $\Lambda_c^+ \rightarrow p K^- \pi^+ (c \tau \sim 60 \mu m)$

- extremely short lifetime, multi-prong decay → critical requirement on single track pointing resolution (simu. to be followed up)
- D^0 in the forward region, more sensitive to high x region
 - charm measurement can have the most significant impact on gluon (n)PDF

Summary

Physics Interests:

- Inclusive HF -> gluon (n)PDF
- $D \overline{D}$ pair -> gluon TMDs
- **D**, Λ_c -> hadronization and CNM

- EIC is a precision QCD machine!
- One should aim for the best detector performance in order to accomplish these precise measurements on heavy flavor observables (and others).
- Ultra-thin fine-pitch MAPS detector is essential!

Backup

Agreed Requirements within Physics Working Group

Eta Bin	Pointing Resolution
[-2.5, -1.0]	$\sigma_{XY} \sim 30/p_T \oplus 20 \mu m$
[-1.0, 1.0]	$\sigma_{XY} \sim \sigma_Z \sim 20/p_T \oplus 5\mu m$
[1.0, 2.5]	$\sigma_{XY} \sim 30/p_T \oplus 20 \mu m$
[2.5, 3.0]	$\sigma_{XY} \sim 30/p_T \oplus 40 \mu m$
[3.0, 3.5]	$\sigma_{XY} \sim 30/p_T \oplus 60 \mu m$

Full Simulation w/ New Beam Pipe

