In-beam experience with CLAS12 SVT

Yuri Gotra Jefferson Lab

SVT-EIC Workshop

09/02/2020

Outline

- Introduction
 - Motivation and technical specs
 - Design
 - Simulation
 - Services
 - Tracker integration
 - Operational experience
 - Calibration and commissioning
 - Operational stability
 - Radiation damage
- Performance
 - Detector occupancy
 - Background rejection
 - Survey and alignment
 - Tracking performance
- Summary and conclusions

The CLAS12 Silicon Vertex Tracker, Nucl. Inst. and Meth. A 962, 163701 (2020)

CLAS12 Central Detector

Motivation and Technical Specs

The **CLAS12 Silicon Vertex Tracker** system is a part of the central detector and will be used to measure the momentum and determine the vertex of charged particles emerging from the target. The SVT system includes 3 regions with 10,14, and 18 sectors of double-sided modules (silicon sensors on both sides of the backing structure) instrumented with digital readout ASICs, FSSR2s.

The system is designed to operate at a luminosity of 10^{35} cm⁻²s⁻¹ and to have a momentum resolution of ~5% for 1 GeV particles emerging from the target at a θ of 90°.

PARAMETER	DESIGN VALUE			
Number of regions (radii, mm)	3 (65, 93, 120)			
Sectors (modules)/region	10, 14, 18			
Module dimensions (L x W x T)	41.9 cm x 4.2 cm x 0.39 cm			
Number of silicon layers/module	2 (<i>U, V</i>)			
Strip layout	(0°— 3°) Graded angle			
Sensor thickness	320 μm			
Readout pitch	156 μm (hybrid side)			
Number of readout channels/module	512			
Total number of readout channels	21,504			
Readout ASIC	FSSR2			
Backend electronics	Custom-made VXS cards			
Angular coverage θ	35°–125°			
Angular coverage Φ	~2π			
Spatial resolution	50-65 μm			
Momentum resolution	~5%			
θ resolution	10–20 mrad			
φ resolution	~5 mrad			
Designed to operate at a luminosity of	10 ³⁵ cm ⁻² s ⁻¹			

Tracking low energy hadrons:

- Solution State State
- ➡ Tight material budget
- Substitution Long light modules (~1% radiation length per region)
- Low-noise readout electronics
- So services in the tracking volume
- Cantilevered support
- Rigi-Flex hybrid board with extended L1 disconnect

Design Overview: Mechanics

Coolant Channel

Module Support

Max. Deflection: ~16 μm (in horizontal modules)

Max. Deflection in Downstream Ring: ~7 μm

Design Overview: Cold Plate

Metal cold plate with a copper tube eliminating leak path through cold plate

- ANSYS thermal analysis
- ANSYS quench analysis of eddy current forces

Brass Heat Sink Plate

Cover Plate (Plastic)

Copper tube brazed into channel

Heat Sinks

Heat output: 2 W per module Hybrids @ 14 – 18 C (coolant @ 6 C)

> The cut-outs in the upstream ring hold the ambient temperature and humidity sensors

Design Overview: SVT Module

0

0

Ο

Ο

Ο

Ο

Rigi-Flex Hybrid Close-Up

SVT Sensor Spatial Resolution

Jefferson Lab

SVT-EIC Workshop - In-beam experience with CLAS12 SVT

SVT Performance Estimates, Proton MC

SVT Performance Estimates, Proton MC

Simulations of Backgrounds and Dose Rates

Module Assembly at Fermilab Silicon Detector Facility

Routing skins

Optical survey

Hybrid placement

Preparing the backing structure

Sensor placement

Wire-bonding

Assembled module

Tracker Integration at JLab

Assembly drawing

Faraday Cage

Barrel assembly

Assembled SVT barrel on the integration Cart

14

SVT-EIC Workshop - In-beam experience with CLAS12 SVT

Calibration

99.9% channels operational after tracker integration Excellent module assembly quality at FNAL SiDet

15

SVT-EIC Workshop - In-beam experience with CLAS12 SVT

Jefferson Lab

SVT Commissioning

Jefferson Lab

SVT-EIC Workshop - In-beam experience with CLAS12 SVT

SVT Active Sensor Cooling System

- SVT is enclosed in a sealed enclosure purged with dry air
- Front-end electronics is cooled by liquid Dynalene through the cold plate
- The silicon sensors are cooled by dry air chilled by liquid coolant
 - Liquid coolant tube inside the dry air tube
- Sensors are kept below -10°C to prevent reverse annealing
- Temperature and humidity inside the barrel is monitored
 - One temperature sensor on each side of the hybrid
 - 12 temperature and humidity sensors on the upstream rings
 - Environmental sensors are integrated in the SVT safety system

Ambient temperature and humidity monitors

Temperature sensor (hybrid, each side)

Installation in the Experimental Hall

Sensor Leakage Currents and Fluence Estimates

Fluence estimates from increase of the SVT sensor leakage currents

CLAS production runs

- 2017÷2019 physics runs:
 - 1.5 × 10¹¹ 1 MeV neq cm⁻²
- 2019 February March liquid deuterium run:
 - 1.3×10^8 1 MeV neq cm⁻² per hour

Expected SVT operating conditions:

- Accumulated dose (< 10¹⁴ 1 MeV neq cm⁻²)
- Occupancies (<2%)
- S.N.R. (>10)

Jefferson Lab

Radiation test run

- Liquid deuterium:
 - 5×10^8 1 MeV neq cm⁻² per hour
- Liquid hydrogen:
 - 1.8×10^8 1 MeV neq cm⁻² per hour
- Lead:
 - 4×10^8 1 MeV neq cm⁻² per hour

Neutron dosimeter

Hit Occupancies

Hit Occupancies

SVT-EIC Workshop - In-beam experience with CLAS12 SVT

Background Rejection with Hit Timing

Tracker Survey

	Cebaf Coordinates Ideal [µm]			Beam Following [millimeters]			BFS Angular [degrees]		
Component	ideal X	ideal Y	ideal Z	bfs dx	bfs dy	bfs dz	dYaw	dPitch	dRoll
TARGET	-80.60000	103.35526	-398.82153	0.13	-0.31	-29.97	0.0012	-0.0043	-0.0198
SVT	-80.60000	103.35526	-398.82153	-0.03	-0.38	-0.17	0.0083	-0.0115	0.0120

SVT-EIC Workshop - In-beam experience with CLAS12 SVT

SVT Preliminary Alignment

Alignment Algorithm

Alignment procedure based on the open source (GPL) project developed by the CMS:

https://kalmanalignment.hepforge.org

Experiment-independent algorithm based on the Kalman Filter.

The project contains a simulation package, the alignment algorithm, and a validation package. The data-driven validation package shows track χ^2 improvement after alignment.

XY Projection of the Reconstructed Crosses

SVT Standalone Tracking Performance

Azimuthal angle correlation between the forward electron and the central proton

Summary and Conclusions

- Novel SVT design concepts successfully tested by operational experience
- Detector is fully calibrated and commissioned, no extra noise after integration
- SVT performance is better than the physics requirements
- All technical specs have been met
- SVT modules, DAQ, and services are fully functional
- Number of operational channels 99.8%
- Stable operation in production runs at design luminosity
- No Single Event Effect readout or data corruption issues were observed
- Radiation damage rates are acceptable
- Preliminary tracker alignment performed on cosmics and beam data
- Acquired operation experience during the 2 years of data taking

Parameter	Performance
Sensor spatial resolution	30 <i>µ</i> m
Sensor S.N.R.	15
Internal alignment (preliminary)	10 μ m
Transverse vertex resolution	< 5 <i>µ</i> m

BACKUP

class

System Overview: Readout Chip

Fermilab <u>Silicon</u> <u>Strip</u> <u>R</u>eadout Chip

- 128 channels / chip, 50 μm input pitch
- Data-driven architecture self-triggered
- □ 1 MHz input rate with < 2% missed
- Beam Cross Over (BCO) clock 128 ns
- DAQ synchronized with timestamp clock
- **Zero-suppressed data readout**
- 1-6 programmable serial outputs
- Double Data Rate (DDR) output
- Maximal data output rate 840 Mbits/s
- Anticipated data rate 200 Mbits/s
- Data readout clock 70 MHz
- 24 bit data format for 'hit' channel
 - 12 bit Address
 - 8 bit <u>BCO clock counter</u>
 - 3 bit ADC
 - 1 Sync
- □ Power consumption < 4 mW / channel
- 2.5 V supply separated on chip
- Radiation hardness 5 Mrad

Solenoid Field Map at the Service Cart

Crates are within the safe limits

Slow Controls and Monitoring

SVT-EIC Workshop - In-beam experience with CLAS12 SVT

Jefferson Lab

Monitoring and Interlocks

Jefferson Lab

SVT-EIC Workshop - In-beam experience with CLAS12 SVT

108

108

Fluence Rate Estimate

During the runs at constant luminosity the following changes in the sensor leakage currents were registered (normalized to 20°C):

- liquid deuterium target, 157 nA, 4.9×10³⁵cm⁻², 283 min: 365 nA (top), 413 nA (bottom)
- liquid helium target, 108 nA, 2.5×10³⁵cm⁻², 249 min: 110 nA (top), 120 nA (bottom)
- lead target, 257 nA, 1.4×10³⁵cm⁻², 204 min: 210 nA (top), 228 nA (bottom)

Temperature scaling of the leakage current to room temperature is done with:

$$I(20^{\circ}C) = I(T) \times R(T); R(T) = (293K/T)^2 \cdot e^{(-E/k(1/293K - 1/T))}, \quad (1)$$

where E=1.4 eV.

Jefferson Lab

The accumulated fluence is estimated with [9]:

$$\Phi = \Delta I / (V \times \alpha), \tag{2}$$

where ΔI is the change in leakage current, V is the volume of the sensor, and $\alpha(T=20^{\circ}C)=4\times10^{-17}$ A/cm. V=4 cm×33 cm×0.03 cm≈4 cm³.

Running conditions of the SVT to ensure stable operation of the detector with tracking performance meeting the technical specs require hit occupancy below 2%, signal-to-noise ratio above 10 and accumulated fluence below 10^{14} 1 MeV neq cm⁻².

- liquid deuterium target: 2.3×10⁹ 1 MeV neq cm⁻² (top), 2.6×10⁹ 1 MeV neq cm⁻² (bottom)
- liquid helium target: 6.9×10⁸ 1 MeV neq cm⁻² (top), 7.5×10⁸ 1 MeV neq cm⁻² (bottom)
- lead target: 1.3×10⁹ 1 MeV neq cm⁻² (top), 1.4×10⁹ 1 MeV neq cm⁻² (bottom)

Fluence rate:

- liquid deuterium target: 4.9×10⁸ 1 MeV neq cm⁻² per hour (top), 5.5×10⁸ 1 MeV neq cm⁻² per hour (bottom)
- liquid helium target: 1.7×10⁸ 1 MeV neq cm⁻² per hour (top), 1.8×10⁸ 1 MeV neq cm⁻² per hour (bottom)
- lead target: 3.8×10⁸ 1 MeV neq cm⁻² per hour (top), 4.1×10⁸ 1 MeV neq cm⁻² per hour (bottom)

Results of the fluence rate estimates during the nuclear target test are comparable with the ones from the CLAS12 runs. The leakage currents for the unirradiated sensors (normalized to 20°C) were 300 nA. By October 2019 the currents increased to 25 μ m.

During the period of 2017–2019 physics runs the accumulated fluence is $\Phi=24.7\times10^{-6}/(4\times4\times10^{-17})\approx1.5\times10^{11}$ 1 MeV neq cm⁻².

During the run on deuterium target in February–March 2019 (46 days \times 50% beam usage = 23 days or 552 hours):

- Region 1: ΔI=18 μA (at 20°C), Φ ≈1×10¹¹ 1 MeV neq cm⁻²
- Region 2: ΔI=12 μA (at 20°C), Φ ≈7×10¹⁰ 1 MeV neq cm⁻²

The fluence rate in Region 2 sensors was 1.3×10^8 1 MeV neq cm⁻² per hour, within the uncertainty of the rate estimates for the deuterium target during the nuclear target test.

