

BEAM-RELATED BACKGROUND STUDIES FOR THE EIC INTERACTION REGION

LATIFA ELOUADRHIRI

GENERIC DETECTOR R&D FOR AN ELECTRON ION COLLIDER

eRD21 Participants

- Latifa Elouadrhiri: JLab physics 1. Charles Hyde: ODU physics JLab accelerator Vasiliy Morozov: 3. ODU physics* Christine Ploen: 4. 5. Marcy Stutzman: JLab accelerator Mike Sullivan: SLAC physics 6. Yulia Furletova: JLab physics 7. 8.
 - Mark Wiseman: JLab engineering

UConn physics* 9.Andrey Kim: 10. Vitaly Baturin: ODU physics * 11.Youri Sharabian: JLab physics 12. Nick Markov: JLab physics 13.Kyungseon Joo: UConn physics 14.Pavel Degtiarenko: JLab RadCon 15. Frank Marhauser: JLab RF **16.**Alexander Kiselev: **BNL** Physics * partially funded by eRD21 project

METHODOLOGY & GOALS

- Synchrotron Radiation impact on central detector
 - X-rays generated by SYNRAD (CERN) code, propagated through IP:
 - Fun4All EIC framework (Jin Huang, BNL)
 - custom GEANT4 model (C.Ploen, A.Kim)
 - X-rays generated by Sync_Bgd (SLAC) code and propagated through IP with same custom GEANT4
- Ion Beam ⊗ Residual gas interactions
 - Direct and cascading secondaries computed in FLUKA
 - Full propagation through beamline magnets, tunnel, walls, detector
- Calibrate any concerns regarding component lifetimes
 - Longer term goal to quantify detector occupancy from background hits.

SYNCHROTRON PHOTONS IN EIC IR1

- GEANT4 stand-alone Model of IP
- Extension in progress to include full beamline, Dipole-upstream to Dipole-downstream

STATIC VACUUM CALCULATION (MOLFLOW) M. STUTZMAN (JLAB)

- Pumping at ~±5m achieves 10⁻⁹ mBar in IP.
- Calculations of synchrotron radiation induced desorption pending.

SYNRAD (CERNCODE)M. STUTZMAN, C.HETZELTexture Sca

- Sawtooth beam pipe reduces scattering from walls
- Virtual planes at exit of Dipole and FFQ visualize Flux
- Photon flux imported into Fun4All simulation by Jin Huang (BNL).
- Smooth absorber at entrance to IP beampipe creates strong scattering
 - Design of sawtooth absorber in progress

Texture Scaling			_ — X
┌ Texture Range —			Current
Min 1.000E-06	C Autosca	ale 🛛 🗹 Use colors	Min: 8.147E-10
Max 5.000E+03	Log sca	ale Swap 7.29MB	
Apply	Max: 4.681E+03		
Gradient			
3.22e3			
1.00e-6	1.00e-4 1.	00e-2 1.00e	0 1.00e2

Power (W/cm² 🔽

X-ray flux hitting central Be Beampipe and SVT are primarily rescattered photons Dipole

eFFQ (upstream) Downstrea<mark>m</mark> Ion beam

SYNRAD FLUX IN CENTRAL REGION

- Hot spots induced by scattering from "photon absorber" at entrance to common pipe.
- Only photons passing through virtual cylinder are passed through to Fun4All or GEANT4 simulation
 - Reduces computation by ~10⁵

Texture Scaling			
Texture Range			Current
Min 1e11	🗌 Autoscale	🗹 Use colors	Min: 1752E+11
Max 1e14	🖉 Log scale	Swap 576KB	MIL LISECT
Apply	et to current		Max: 2.392E+14
Gradient			
7.14e11	.		
1.00e11	1.00e12	1.00e13	1.00e14
Flux (ph/sec/cm 💌			

STATUS OF SYNC_RAD PHOTON FLUX CALCULATIONS

- Updated July electron IR1 optics
- Updated BELLE-II beam halo
- Full angular spread of emission
- Propagation through IP in progress

x vs y at IP from Quad2 u.s.

STATUS OF SYNCHROTRON STUDIES

- The problem is very dynamic:
 - Monthly updates to magnetic optics
 - Monthly updates to electron beam halo estimates, based on BELLE-II experience (Mike Sullivan, SLAC)
 - Active revision of Beampipe and Photon collimator design (upstream and downstream) in progress at BNL
- Working hard to keep up-to-date with design status, crossreference different simulation approaches
 - SYNRAD+fun4all *vs.* Sync_rad + GEANT4

• Absolute normalization of flux is still a work-in-progress

BEAM GAS INTERACTIONS

V. Baturin, et al.

- FLUKA Model
 - All Beam Line Magnets ± 30m
 - update to ± 100 m
 - Walls, Floor, Ceiling

RICEO Θ RICEI RICEO VOID electrons

VOID

VOID

VOID

STATISTICS.

VOID

lons -

NEUTRON FLUENCE, 275 GEV PROTONS INCIDENT

Color scale is Neutrons/cm²/proton @ 100 mBar Air Scale by 6.25•10⁷/sec for n/cm²/sec for 1 Amp protons @ 10⁻⁹ mBar

11

NEUTRON SPECTRA

 Illustrates extensive "thermalization" by FLUKA in 30 m propagation to IP

EQUIVALENT 1 MEV NEUTRON FLUENCE

- Equivalent n/cm² per proton @ 100 mbar Air
- Scale by 6.25•10⁷/sec for 1 Amp beam and 10⁻⁹ mBar vacuum

Si VERTEX TRACKER: EQUIVALENT 1MEV NEUTRON FLUENCE

- Equivalent 1 MeV n/cm²/proton @ 100 mbar
- Scale by 6.25•10⁷/sec for 1 Amp beam and 10⁻⁹ mBar vacuum
- 1 year = 10⁷ sec: Deep magenta color (inner most Si layer)
 ~ 10¹¹ n/cm²/year

14

EQUIVALENT NEUTRON FLUENCE SUMMARY

- Normalized to:
 - Residual gas pressure 1.e-9 mBar
 - 1 Year → (1 Amp)(10⁷ sec)
 - Rates scale with molecular mass of gas

Location	Color value	n/cm²/Year	n/cm²/Year (backup slide)
Residual Gas (at 10 ⁻⁹ mBar)		Air	95% H ₂ + 5%CO ₂
SVT	1.6•10 ⁻⁴	1011	6 • 10 ⁹
Central Tracker, PID	10 ⁻⁵	6•10 ¹⁰	
Forward beamline	$10^{-4} - 10^{-3}$	6•10 ¹⁰ — 6•10 ¹¹	

ONGOING BACKGROUND STUDIES

- Beam-Gas
 - Realistic vacuum profile
 - Energy spectra \rightarrow Occupancy of key detectors
- Synchrotron:
 - Direct comparison of SYNRAD and Sync_Bgd photon generation and GEANT4 model and Fun4All hit rates and doses
 - Recalculate for expected iterations of IR design, upstream photon absorber
 - Implement IR2 concept, when available
 - Occupancy of SVT and other key detectors

LOTS OF WORK STILL TO DO!

BACKUP SLIDES

BEAM-GAS INTERACTIONS WITH 95% H₂, 5% CO₂

- Map of 1 MeV equivalent fluence in the SVT area in units of n/cm²/proton/mBar.
- From the point (285cm,3.5cm) near the innermost SVT layer we read the fluence = 0.9•10⁻⁷ n/cm²/proton/mBar
- 570 n/cm² @ 1 Amp & 10⁻⁹ mBar
- 6•10⁹ n/cm²/yr

EIC Backgrounds

BEAM LOSS ACCIDENT NEAR IP

1 MeV Equiv n/cm²/proton

- 100 GeV proton beam lost just upstream of IP
- Fluence to SVT ~ 0.02 n/cm²/proton
- Stored beam = 8•10¹³ protons
- Total beam loss → 1.6•10¹² n/cm²
- 60 total beam loss events before destruction of SVT

SYNRAD:

Test plane normal to beam: 10^18 max flux. Very small percentage of hits will hit Be

~1 per 10⁵

Test plane is a cylinder at 95% Be diameter 10^13 max flux. Most hits on test plane will also hit Be

- ✓ Use colo Min: 5.949E+07 Min: 5.972E+00 ✓ Log scale Swap 133ME ✓ Log scale Swap 1.31MB Max: 2.491E+18 May: 1834E+14 Flux (ph/sec/cmi -Flux (ph/sec/cmi +
- Central flux through IP: 10¹⁸ γ/cm²/sec
- Peak flux striking Be pipe: 10¹³ γ/ cm²/sec in small horizontal band

SYNRAD STUDY: 18 GEV ELECTRON BEAM

EIC Backgrounds

still TBD

•

SUMMARY OF HOT-ZONE RESULTS

18 GeV electron beam

- 0.26 Amp, inclusive of beam tail
- $2\mu s \rightarrow 10^9$ total synchrotron photons

Inner Si Layer

- Dose = $4 \cdot 10^{-4} \text{ GeV/g/}(2\mu s) = 200 \text{ GeV/g/s}$
- Dose = 3.2•10⁻⁵ J/kg/s
- Dose = 320 Gy/Year
 - 1 year = 10⁷ sec
- This estimate predicts modest radiation dose.
 - Updates in progress
 - Planned estimate of Event Occupancy in SVT

