

Path to a hybrid tracker baseline and initial D^o event studies

P.P. Allport, L. Gonella, P. Ilten, P.G. Jones, P.R. Newman, <u>H. Wennlöf</u> 2/9 -2020

Outline

- Introduction
 - Motivation
 - Simulation tools used
 - Basic geometry description
- Baseline layout simulations
- Physics performance simulations
- Future work
- Conclusions

This work has been carried out as part of the Birmingham eRD18 project "Precision Central Silicon Tracking & Vertexing Detector for the EIC", and eRD25 "Silicon Tracking and Vertexing Consortium" within the <u>EIC Generic Detector R&D</u> <u>Programme</u>

Motivation

- Building on from initial technology investigations
 - Simulations make it easy to see performance impact of pixel size, material budget, magnetic field etc.
- Goal: developing and testing a silicon vertex tracker, taking technologies into account
 - Investigating performance of silicon vertex tracker concepts
 - Optimising SVT layout and parameters
 - Understanding constraints of detector on physics measurements
- Two types of simulations are run:
 - Baseline layout simulations using single particles
 - Physics performance simulations using generated collision events

Simulation tools used

- EICROOT
 - For basic single-particle simulations
 - Developed at BNL, based on framework built for the FAIR lab and the PANDA experiment
 - GEANT-based, with single-particle gun input
- Pythia 8
 - For collision event generation
- Fun4All (used in sPHENIX simulations)
 - For propagation and reconstruction of the physics events
 - Developed for and used in the sPHENIX experiment
 - GEANT-based, with event generator input
- University of Birmingham BlueBEAR HPC service

Basic geometry description

Layout cross sections along the beam direction

Compact all-silicon design by R. Cruz Torres, see <u>talk</u> for details

- Two different designs are proposed and simulated; hybrid (silicon+gaseous detectors) and all-silicon
- Geometry components:
 - Beampipe runs through the centre
 - Silicon barrel layers in the central region
 - Silicon disks in the forward and backward regions
 - Gaseous detector or more silicon layers outside central barrel

Baseline performance simulations in EICROOT

- Carried out for both silicon+TPC and all-silicon tracker designs
- Studies have covered:
 - Central and forward/backward regions
 - Interface region between barrel and disks
 - Si+TPC compared to all-silicon
- Figures of merit for studies:
 - Relative momentum resolution
 - Transverse and longitudinal pointing resolutions
- Examples shown in this talk. More studies and details in report <u>http://cern.ch/go/xKk6</u>

Contents

Table of contents	ii
1 Introduction	3
2 Experimental setup	5
3 Results	7
3.1 Comparison no SVT/SVT+TPC	
3.2 Barrel pixel size	8
3.3 Barrel layout studies	9
3.5 Time-stamping layer thickness and pixel size	11
3.6 Disks, varving pixel sizes	12
3.7 Innermost disk position	16
3.8 Different inner barrel length, with disks	17
3.9 Replacing gas TPC with silicon layers and disks	20
3.9.1 Different silicon layouts	20
3.9.2 Different silicon replacement outer radius	24
4 Conclusions and outlook	30
Appendix A Theoretical background	31
A.I. Particle interactions	31 91
A 1.2 Multiple scattering	· · 31 31
A 2 Detector properties	
A.2.1 Spatial resolution of segmented detector	32
A.2.2 Pointing resolution	33
A.2.3 Relative momentum resolution	
Appendix B Fit interval trimming and comparison with eRD16	36
Appendix C. Eurthen and TPC replecement studies	90
C.1. Different silicon lavouts	30 38
C.1.1 Comparison of two silicon layers and five silicon layers	39
C.2 Different silicon replacement outer radius	40
Appendix D Area comparison to the ALICE ITS Upgrade	42

Initial design parameters

- Design based on modified BeAST concept
 - 2 inner barrel layers, 3 outer barrel layers
 - 7 disks in forward and backward directions
- Material budget;
 - Inner layers and disks: 0.3% X/X $_{\rm 0}$
 - Outer layers: 0.8% X/X₀
- Beampipe
 - Beryllium with 18 mm radius in central region
 - Aluminium with 20 mm radius further out
- Innermost barrel layer placed as close as possible to beampipe
- Innermost disk placed as close as possible to inner barrel layers (inside outer barrel layers)
- Default pixel size: 20x20 µm²
- Default magnetic field: uniform 1.5 T
- Conservative TPC parametrisation

Cross section along beam direction

Example: Simulations of disks

- Simulations have studied two configurations, with either 7 or 5 disks per side
 - First disk inside outer barrel layers
 - Remaining disks equidistant outside
- Study presented here:
 - Impact of disk pixel size and magnetic field
- Simulation parameters used:
 - Forward region studied; $\eta = 3$
 - Single electrons fired from centre
 - Magnetic field: uniform 1.5 T and 3 T
- Examples of other disk studies found in <u>report</u>:
 - Innermost disk position
 - Interface region between barrel and disks

Disk pixel sizes - results

- Smaller pixel size improves both relative momentum resolution and pointing resolutions
- 3 T magnetic field improves momentum resolution by a factor of ~2, as expected from theory
- Not much difference between 7 or 5 disks
 - 5 slightly better momentum resolution due to lower material
 - 7 gives better coverage, however

Decreasing radius – comparing hybrid to all-silicon

- Goal: investigate performance of Si+gas and all-Si when outer radius is decreased
- Potentially interesting for detector complementarity discussion
- Five-layer all-silicon layout used.
 Outer radius decreased, layers kept equidistant
- Simulation parameters used:
 - Central region studied, $|\eta| \le 1$
 - Single electrons fired from centre
- Details, and study in forward regions, available in <u>report</u>
- Note: gas TPC provides more points for reconstruction, and gives some particle ID info. This does not factor into these simulations

Pixel size used: 20x20 µm² Momentum range: 0 to 30 GeV/c Magnetic field: uniform 1.5 T

Decreasing radius study - results

Relative momentum resolution

Transverse pointing resolution [µm] 409.8 mm outer radius; optimised disks Relative momentum resolution [%] 409.8 mm outer radius; optimised disks 409.8 mm gas TPC outer radius 409.8 mm gas TPC outer radius 500.0 mm outer radius; optimised disks 16 500.0 mm gas TPC outer radius 500.0 mm outer radius; optimised disks 500.0 mm outer radius; optimised disks 500.0 mm gas TPC outer radius 600.0 mm gas TPC outer radius 600.0 mm outer radius; optimised disks 775.0 mm outer radius; optimised disks 775.0 mm gas TPC outer radius 600.0 mm gas TPC outer radius 12 775.0 mm outer radius; optimised disks 5 10 775.0 mm gas TPC outer radius 25 30 Momentum [GeV/c] 25 30 Momentum [GeV/c] 10 15 20 5 10 15 20

Transverse pointing resolution

- Colours correspond to radii. Solid line with circular markers indicates all-silicon, and dashed line with square markers indicates hybrid
- All-silicon layout relative momentum resolution deteriorates slower with increasing momentum
- The smaller the radius, the better the all-silicon compared to hybrid
- All-silicon layout can outperform Si+gas hybrid at p≥5 GeV/c

Physics performance simulations

- After CD-0 and site selection in January 2020, studies can be more focused
- Parameters are better known;
 - Beamline
 - Beampipe
 - Detector space constraints
 - Interaction rate
- Detector simulations can be more realistic, and study the impact of the parameters open for discussion (e.g. SVT radius, magnetic field, etc.)
- New layout based on new beampipe and ALICE ITS3 technology (see talks tomorrow morning)
 - Allows for lower material and smaller pixel size
- Investigations made into the detector physics performance, using realistic events and event reconstruction

Framework benchmark study

- Moving into new simulation framework, a comparative study is first made
 - Exact same study made in EICROOT and Fun4All
- Generally very good agreement between the frameworks gives confidence that both old and new studies are relevant

New layout description

- Key part of simulations is to develop and test the performance of wellintegrated, large-acceptance tracking concepts based on the ITS3 technology
- The EIC requires a larger beampipe than previously studied, so the innermost detector layers have to be shifted accordingly
- An extra inner layer added to better register low-momentum particles
 - Especially important at higher B-field
- A new baseline silicon vertex tracker is designed;
 - Three inner layers, two outer layers
 - Material budget: 0.05% X/X₀ inner layers, 0.55% X/X₀ outer layers
 - Pixel size: 10x10 µm²

New layout performance

- Comparing old layout (green) with new layout using ITS2 technology (blue) and ITS3 technology (red)
- New layout using ITS2 technology performs worse due to larger beampipe radius
- The decline in performance is overcome by going to ITS3 technology
 - Smaller pixel size (10x10 µm²)
 - Lower material (0.05% X/X₀)
- ITS3 technology clearly worthwhile to pursue to keep high vertexing performance

Transverse pointing resolution vs momentum

Physics performance simulations

- Open charm events studied
- Pythia 8 used for event generation
 - Electron-proton collisions at a few different energies
 - Photon-gluon fusion to $c\bar{c}$ process
 - Allowed to hadronise freely
- Figure of merit: D⁰ reconstructed mass, from hadronic decay to pion-kaon pair
- Overall goal: Finding detector kinematic range in x and Q², and precision of measurements in bins of x and Q², for varying layouts and parameters

Initial all-silicon outer radius study

- All-silicon layout used, with varying outer radii
- Ideal particle ID assumed
- All pion-kaon pairings used in creating invariant mass spectrum
- Centroid value of D⁰ peak (1865±14 MeV/c²) is within errors from PDG mass value (1864.84±0.18 MeV/c²)

- Clear improvement in mass peak width as outer radius increases
 - Matches theoretical prediction for improved momentum resolution well

Initial magnetic field strength study

- All-silicon layout used, in ITS3based design
- Magnetic field varied
 - 1.5 T
 - 3.0 T
- Initial results shown
 - Using 3.0 T **improves mass resolution** at this particular collision energy of $\sqrt{s} = 29$ GeV
 - Further studies ongoing
- Risk: higher field causes lowmomentum particles to spiral before hitting the detector
 - This study made with ITS3-like and 3 inner layers to mitigate this risk

Initial magnetic field study

- Mass peak width for different e-p collision energies suggested by Physics WG;
 - 5x41 GeV
 - 5x100 GeV
 - 10x100 GeV
 - 18x275 GeV
- Mass resolution improved by higher magnetic field
- However, events are lost due to spiralling

Initial magnetic field study

- Number of events in mass interval decreases with increased magnetic field
 - ~25% decrease
- However, signal-to-noise ratio increases
 - Mass peak is sharper compared to background
- Study ongoing concerning the location of D⁰ decay products for different fields
- Different cuts and their impact being investigated

Future work

- Overall goal: Finding detector kinematic range in x and Q², and precision of measurements in bins of in x and Q², and **optimising** layout and parameters
- Technical steps to get there:
 - Implementing realistic services in simulations (see talk by <u>L. Greiner</u>)
 - Further investigate impact of magnetic field for different collision energies
 - Higher magnetic field means better momentum resolution, but the lowestmomentum particles will not be detected
 - Investigate and quantify how ITS3-like design can improve performance
 - Using actual vertex reconstruction rather than simple distance of closest approach method
 - More realistic situation
 - Integrating SVT with other subdetectors to evaluate full detector performance
 - Work ongoing with gas detector groups to create full hybrid concept baseline

Future work – full hybrid concept

- Following work done by eRD16, eRD18, and eRD25, baseline silicon layout determined for the Yellow Report hybrid simulation effort
 - Details and implementation <u>here</u>. See also slide 14
 - Pixel size: 10x10 µm²
 - Material budget: 0.05% X/X₀ inner layers, 0.55% X/X₀ outer layers, 0.24% X/X₀ disks
- Combining silicon vertex tracker baseline with gaseous outer detectors
- 2 possible designs;
 - TPC and large area MPGDs for end cap tracking
 - MPGD barrel and large area MPGDs for end cap tracking

Silicon and TPC layout

Silicon and MPGD layers layout, courtesy of Q. Huang, CEA Saclay

Conclusions

- A few concepts with high performance found from detector simulations, both in hybrid and all-silicon configurations
 - Simulations show that high granularity detectors and low material essential close to the interaction point
 - At most 20x20 µm² pixel size can be used, but 10x10 µm² needed to overcome disadvantages of large beampipe
 - Material budget below 0.1% X/X₀ greatly improves low-momentum position measurements
 - ITS3 technology gives best possible performance
- All-silicon layouts can match silicon+gas TPC hybrid layouts above a few GeV/c, and outperform them at higher momenta
 - If smaller radius is desired, it appears better to replace gas TPC with silicon layers
- A **baseline** has been determined for the silicon part of a hybrid tracker
- Simulations of physics performance ongoing
 - Evaluating the proposed ITS3-based concept and assess the improvements it brings
 - Simulation framework yields credible results

Backup slides

Note: See report for summary of baseline layout simulations up until January 2020; <u>http://cern.ch/go/xKk6</u> Tracking WG group meetings contain more recent studies

Baseline simulation parameters used initial studies

- Starting point: BeAST tracker
 - Radii of barrel layers adjusted to be consistent with ALICE ITS distances between layers (minimum distance between outer layers is 46.2 mm)
- Beampipe
 - 18 mm radius in central region (\pm 400 mm), 0.8 mm thick beryllium
 - 20 mm radius aluminium further out
- TPC parametrisation default EICROOT one (conservative):
 - : 15.00 µm/√D[cm] Transverse dispersion
 - Transverse intrinsic resolution : 200.00 µm
 - Longitudinal dispersion : $1.00 \,\mu m/\sqrt{D[cm]}$
 - Longitudinal intrinsic resolution: 500.00 µm
 - Vertical pad size

- 0.50 cm

Barrel simulations example

- Carried out in the central region, |η| ≤ 0.5, using single pions fired from centre
- Results shown here for default parameters, varying the number of SVT layers
 - Full details and more studies in attached <u>report</u>

Momentum: 0 to 5 GeV/c

Transverse pointing resolution

Barrel simulations example: number of layers

Momentum: 0 to 50 GeV/c

- Results as expected
 - Relative momentum resolution largely unchanged due to lever arm length being constant
 - 2 inner layers is the most important thing for pointing resolution at high momenta
- Want as low material as possible while keeping redundancy and tracking efficiency

Barrel/disk interface region simulations

- Studies have looked at
 - Innermost disk position (at $\eta = 3$)
 - Length of inner barrel layers (at range of pseudorapidities)
- Length of inner barrel layer study presented here
- Innermost disk always 5 mm from inner barrel edge
- Parameters
 - Particle: e–
 - Momentum range: 0 to 50 GeV/c
 - − Pseudorapidity range: $0 \le \eta \le 2.5$
 - Pixel size: 20 × 20 μm²
 - Magnetic field: 1.5 T
- Results show that 270 mm long inner barrel is best

Silicon and gas TPC compared to all-silicon layouts

- "2+2 layers, long"
 - Naïve baseline
 - TPC replaced with long Si layers
- "2 layers, long, small radius"
 - Decreased outer radius

2 layers, long, small radius

Silicon and gas TPC compared to all-silicon layouts

- "2 layers, short, small radius, large disks"
 - Shorter layers; more physically probable
 - Leaves room to increase disk size
 - Results indicate that good disk coverage is key to keeping resolution
- "5 layers, short, optimised disks"
 - Optimised design
 - Keeping parts physically viable
 - Filling gaps with disks and rings
 - 5 equidistant extra silicon layers, to aid in track reconstruction

2 layers, short, small radius, large disks

5 layers, short, optimised disks

Hybrid compared to all-silicon layouts

- Various all-silicon layouts tested
 - Only optimised layout shown here, more in backup slides and <u>report</u>
- Simulation parameters used:
 - Central and forward region studied, 0 ≤ η ≤ 2.5
 - Single electrons fired from centre
 - Layer thickness in outer silicon layers: 0.8% X/X₀
- Optimised all-silicon layout:
 - Keeping parts physically viable
 - Filling gaps with disks and rings
 - 5 equidistant extra silicon layers, to aid in track reconstruction

Hybrid compared to all-silicon layouts - results

- Pointing resolutions do not change much between layouts, apart form where layers are missed
- Large disk coverage is important to keep resolution at higher η
- Blue curve in plot is hybrid layout, the others are all-silicon
- All-silicon layout can outperform Si+gas hybrid at p≥5 GeV/c
 - Note: gas TPC provides more points for reconstruction, and gives some particle ID info. This does not factor into these simulations

Relative momentum resolution vs p

Silicon and gas TPC compared to all-silicon layouts - results

Relative momentum resolution vs p

Relative momentum resolution vs η

- Large disk coverage is important to keep resolution at higher η
- All-silicon layout can outperform Si+gas at p≥5 GeV/c
 - Note: gas TPC provides more points for reconstruction, and gives some particle ID info. This does not factor into these simulations
- Pointing resolutions do not change much between layouts, apart form where layers are missed

Framework benchmark study

- Moving into new simulation framework, a comparative study is first made
 - Exact same geometry used in an EICROOT study is imported into Fun4All framework
 - Single particles are generated in same parameter space
 - Same analysis code run on simulation results
- Generally very good agreement between the frameworks gives confidence that both old and new studies are relevant

Relative momentum resolution

Transverse pointing resolution