On tracking requirements for jet measurements

Miguel Arratia

Why jets? Because jets are most of what colliders do

EIC, a jet factory, will make the first jets in nuclear DIS and proton-polarized DIS

Unique jet physics program, unlike any previous collider (even HERA!!)

The EIC science program with jets

Jets as tools to realize the EIC science goals — Recent publications

• The spin of the proton, PDFs

Hinderer, Schlegel, Vogelsang `15, `17, Abelof, Boughezal, Liu, Petriello `16, Boughezal, Petriello, Xing `18, Aschenauer, Chu, Page `19, Borsa, Florian, Pedron `20, Arratia, Furletova, Hobbs, Olness, Sekula `20

• 3D nucleon/nucleus tomography

Zheng, Aschenauer, Lee, Xiao, Yin `18, Liu, FR, Vogelsang, Yuan `19, Gutierrez-Reyes, Scimemi, Waalewijn, Zoppi `19, Hatta, Mueller, Ueda, Yuan `19, Arratia, Kang, Prokudin, FR `20

• Saturation, a new form of gluon matter

Hatta, Xiao, Yuan `17, Salazar, Schenke `19, Roy, Venugopalan `19, Kang, Liu `19

· Hadronization and quarks and gluons in the nucleus

Klasen, Kovarik `18, Aschenauer, Lee, Page, FR `19, Qin, Wang, Zhang `19, Arratia, Song, FR, Jacak `19, Li et al. `20

Slide by Felix Ringer presented during "Jet Observables" workshop.

Jets are excellent proxies for parton kinematics

Phys. Rev. C 101, 065204 (2020)

Jets are excellent proxies for parton kinematics , provided that:

- We capture most of particles in jet. Large radius required. HERA experience shows that R=1.0 leads to O(1)% "hadronization corrections". Only possible because DIS is a clean environment.
- We measure both charged and neutral particles in the jet (~4-10 total on average)

Defining "charge-only jets" would introduce model-sensitivity to fragmentation, completely defying the purpose of jets in the first place. While such approach works for heavy-ion physics at LHC (x100 higher energy than EIC), it does not really match EIC accuracy needs.

What is in a jet?

Two options to measure jets

At high energies both methods yield similar jet energy resolution At EIC energies, the choice for "energy-flow" is a no brainer

Energy-flow is not precisely new...

(Used by ALEPH@LEP, CDF@Tevatron, H1@HERA, CMS@LHC, and is planned at sPHENIX@RHIC ...)

"Energy-flow" method

- (1) charged tracks and identified leptons contributions are taken from their tracking measurement
- (2) γ and π^0 from the electromagnetic calorimetry
- (3) neutral hadron from both calorimeter measurement
- (4) the last component being the residual from charged hadrons or γ which should be kept at the lowest level

http://hal.in2p3.fr/in2p3-00012827/document

Energy flow in practice

CMS Collaboration JINST 12 (2017) P10003

Granularity of calorimeters key, "confusion" drives the resolution

With just tracking, the glass if half full (half empty)

Jet energy resolution with energy-flow method is driven by measurement of neutrals

Tracking resolution is negligible

Energy-flow performance expected at EIC arXiv:2007.07281

But tracking resolution still relevant for fragmentation (aka "hadron-in-jet") measurements, e.g:

Jet-based measurements of Sivers and Collins asymmetries at the future Electron-Ion Collider <u>arXiv:2007.07281</u>

Hadron-in-jet distributions

Resolution depends on both jet energy and tracking momentum resolution. Improving momentum resolution beyond jet-energy resolution would not improve the measurement.

$$dp/p$$
 at high $z < ext{jet} \ dE/E$ 16

Hadron-in-jet Collins asymmetries

Most stringent requirements come from high-x domain, O(100 GeV) jet.
 Need that dp/p < 8% for tracks with ~60 GeV p at pseudorapidity ~ +2.0

Forward jets, a tough challenge for tracking

Does the tracker have a fighting chance vs HCAL?

Purely calorimetric reconstruction

Summary

- "Energy flow" method is a no-brainer for EIC jet measurements (except perhaps at very forward rapidity).
- In contrast to SIDIS, for jets there is no need or gain in improving tracking resolution. Performance with B=1.5 T magnet is OK for most (all?) jet measurements.
- For EIC jets, every particle is precious. Need low threshold (~100 MeV) with high efficiency. Beware of the 3.0 T field.
- Jets and SIDIS offer opportunity for complementarity for both detector and physics.

ets for at the ElC 3D imaging

Riverside, CA. 17-18 Nov 2020

(Now online, 23-25 Nov 2020)

Organizing Committee Miguel Arratia (University of California, Riverside) Renee Fatemi (University of Kentucky) Zhongbo Kang (University of California, Los Angeles) Alexei Prokudin (Penn State Berks & JLab) Felix Ringer (University of California, Berkeley)

Topics:

Jets for studies of spin, and transverse-momentum-dependent and generalized- parton distributions (TMDs and GPDs)
Jet observables, advantages and complementarity at the EIC
Novel jet-substructure observables
pQCD and effective-field-theory techniques for jets
3D and 5D imaging with exclusive jets (GPDs and Wigner functions)

- Connections to Lattice QCD
- •Parton-shower developments
- •Detector requirements for the EIC

You are welcome to attend virtually to the inaugural event in this new workshop series. Registration open at: <u>https://indico.bnl.gov/event/8066/overview</u>

Second edition will be hosted by CFNS in 2021