Silicon tracking: requirements to reconstruct vector mesons Spencer Klein, LBNL

EIC Silicon pixel workshop, Sept. 2-4,. 2020

- Exclusive vector meson production
- Detector requirements & simulations
 - Pseudorapidity coverage
 - ♦ Φ->K⁺K⁻ and low momentum particles
 - Separating the Y(1S), Y(2S) and Y(3S)
 - Other requirements
- Conclusions

Work done in collaboration with Sam Heppelman

Vector meson photoproduction and electroproduction

- Coherent photoproduction (in exclusive group) and incoherent photoproduction (in diffraction and tagging) differ only in the presence of nuclear breakup.
- In Good-Walker paradigm:
 - Coherent photoproduction is sensitive to the average nuclear configuration
 - d_☉/dt maps out parton positions, ala GPDs
 - Spatial distribution of shadowing
 - Incoherent photoproduction is sensitive to fluctuations, in nuclear positions and also to the presence of gluonic hot spots
- Good separation is critical!
- Major treatment in 2012 "White Paper"

Focus on 'simple' final states

- **J**/ψ -> ee, μμ
 - Easiest case
- Ψ' -> ee, μμ
 - Well separated from J/ψ ; separation is easy
- Y(1S), Y(2S) and Y(3S) -> ee, μμ
 - Mass splittings are smaller; imposes momentum resolution requirement
- **Φ->K**+K-
 - Challenging; for photoproduction ($Q^2 \sim 0$), kaons are so soft
 - White paper only considered Q² > 1 GeV², but smaller virtualities are also important for understanding transition into saturation
- ρ-> π⁺π⁻
 - This reaction requires the broadest rapidity range
- Plus (for larger Q²) the scattered lepton
- N. b. Some of the requirements are very tough to meet

Technical details

- Simulations with eSTARlight, usually 275 GeV p or 100 GeV/n A on 18 GeV electrons
- Simulations are for an all-silicon detector
 - 6 layers of barrel tracking
 - 5 endcap disks on each end (2 inside the outer barrel)
- 1.5 T solenoidal field standard, 3 T field sometimes considered

From VM rapidity to $\pi/K/e/\mu$ pseudorapidity

- The relationship between VM rapidity and daughter pseudorapidity depends on the angular distribution of the decay in the VM rest frame.
 - Clebsch-Gordon coefficients for J=1 decays to two J=1/2 particles are different from decays to two J=0 particles

Vector meson rapidity & Bjorken-x

Full coverage in x requires wide acceptance in pseudorapidity

- $y = ln(2\gamma x M_p/M_V)$ so lowest Bjorken-x -> smallest y
 - Kinematic cutoff in y is at $2\gamma x M_p k = M_V^2$
- Positive rapidity -> large x for threshold behavior, pentaquarks....
- ρ^0 is the hardest case, since it is the lightest VM
- Need at least +1 unit of η for good detection efficiency & to study longitudinal to transverse cross-section ratio

Rapidity ranges for eA

eA has lower per-nucleon energy

- Lower energy/nucleon –> shifted scale wrt Bjorken-x
- → Lower $\sqrt{s_{eN}}$ -> Narrower rapidity range

 ρ photoproduction

Is the full rapidity range really needed?

- Good pseudorapidity acceptance needed for polarization measurements (longitudinal vs. transverse polarization)
- Light meson (ρ ,...J/ ψ) threshold region covered by Jlab
 - Is overlap needed? How much?
- HERA already covered the highest energy photons for ep
 - EIC will have higher statistics
 - eA is a narrower rapidity range than ep -> less difficult

Φ ->K⁺K⁻ reconstruction

- Soft decay: P_{Kaon} =135 MeV/c (β ~0.2) in ϕ rest frame
 - β~0.2 -> quite heavily ionizing
- - Especially at small |rapidity| where there is no/little Lorentz boost
 - There is a gap in photoproduction acceptance at |y|~0
 - Most detectors are not sensitive to such soft kaons

$\boldsymbol{\varphi}$ detection efficiency

- All Q², but dominated by low Q²
- Acceptance hole at mid-rapidity (for low Q²)
 - No acceptance for p_T =135 MeV kaons at η =0.
- φ->K_SK_L seems tough, and φ-=> ee, μμ have very small (3*10⁻⁴) branching ratios

Do we need full coverage for the $\phi?$

- The ϕ was highlighted in the 2012 White Paper
 - But, the plots only considered Q²>1 GeV²
- Is photoproduction (Q² ~ 0) needed?
 - Studying Q² dependence of shadowing is a key goal for EIC
- Is the ρ an acceptable substitute for the ϕ here?
- Is a hole at mid-rapidity/medium, W_{γp} acceptable?

Mantysaari and Venugopolan *Phys.Lett.B* 781 (2018) 664-671

Separating the Y states

- The Y(2S) and Y(3S) are separated by only ∆M=331 MeV
 - ♦ △M/M~ 3%
 - $J/\psi-\psi$ ' splitting is much larger

- Separating the Y states is a signature measurement for sPHENIX
 - They spec. mass resolution $\sigma(M)=100$ MeV/c, or about 1% M(Ψ)
 - This plot shows σ(M)=87 MeV
- For two back-to-back equal momentum tracks M=2|p|
 - σM/M~ σp/p
 - σp/p ~ 1% at 5 GeV [for mid-rapidity]
 - Slightly more sophisticated arguments indicate that the resolution requirement is slightly relaxed at larger rapidity or Q²

J. Osborne for sPHENIX "Connect the Dots 2020"

Simulations...

- eSTARlight simulations in silicon detector
 - ♦ 3 Y states are separable even at B=1.5 T
- Resolution is better than in sPHENIX simulations
 - Hard to beat silicon at large |p|
 - Caveat we have not studied large |y| carefully

Some other requirements for VM

- Low mass, to minimize electron energy loss
- Resolution to resolve diffractive minima
 - Limited by other factors, including electron beam momentum spread
- **Good** π/γ acceptance for nuclear transitions
 - ψ'->ππJ/ψ
 - $\psi' \rightarrow \gamma \chi_c, \chi_c \rightarrow \gamma J/\psi$
- Good acceptance for scattered electron, down to the kinematic limit where the electron stays in the beam
- Good separation of coherent and incoherent photoproduction, via detection of nuclear breakup and photons from low energy nuclear dissocation

Conclusions

- Vector meson photoproduction or electroproduction leads to low-multiplicity final states (2 charged particles + scattered electron), but there are still some challenges for a central detector.
- ρ⁰ reconstruction at small Bjorken-x requires sensitivity at large negative pseudorapidity.
 - Tracking is desirable up to pseudorapidity 5.
- Reconstruction near threshold requires sensitivity at larger positive pseudorapidity
 - Tracking is desirable up to pseudorapidity-5.
- Separating the three Y states requires reasonably good momentum resolution, op/p=1% at 5 GeV. In ep, leptons from Y are produced over the range [pseudorapidity]<4.</p>

Backup

Toward detector requirements

- Detector requirements are emerging from parts of the diffraction and tagging group
- For vector meson reconstruction
 - Large pseudorapidity (at least |η<4|) acceptance, to cover the full Bjorken-x range
 - $\Delta p/p \sim 1\%$ at 5 GeV required to separate Y states
- For many purposes (vector mesons, short range correlations...)
 - Full kinematic coverage for downstream protons and neutrons
 - Detailed requirements & designs from meson structure function group
 - To separate coherent and incoherent VM production
 - For heavy ions, downstream photon detection, down to ~ < 100 MeV
 - For light ions, detection of intact ions with small energy loss & P_T