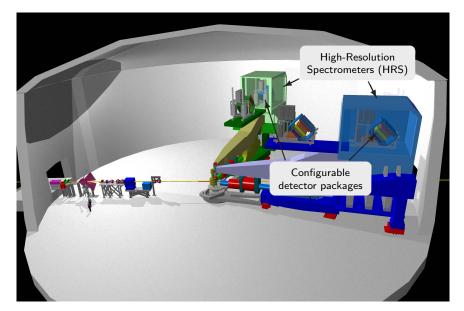
### Hall A Software & Analysis for the 12 GeV Era

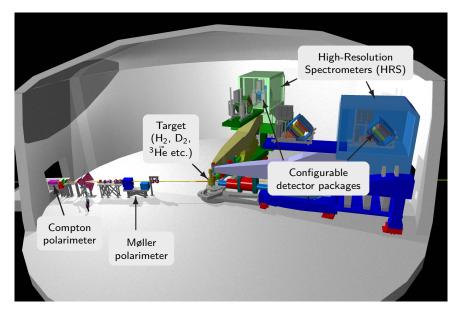
Ole Hansen

Jefferson Lab

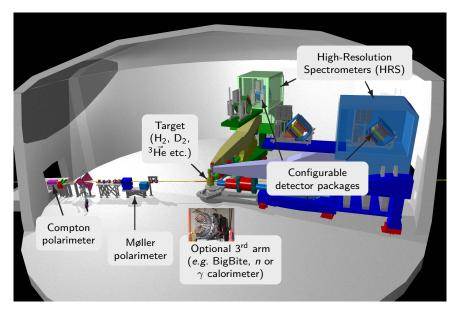
JLab 12 GeV Software Review Morning Session June 7, 2012





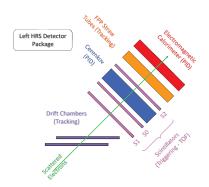


### Outline

- Science Program
- 2 Early 12 GeV Experiments
- Software Components
- Status, Tasks, Management
- 5 Computing Requirements
- 6 Summary


# Hall A Experimental Equipment

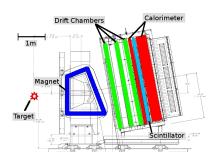


## Hall A Experimental Equipment




## Hall A Experimental Equipment

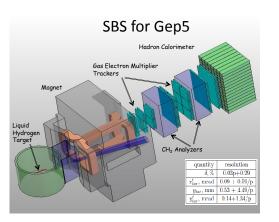



## Typical Detector Packages

#### High-resolution spectrometer (HRS)



- Vertical Drift Chambers (VDCs): 1472 channels
- Focal Plane Polarimeter (FPP): 5112 channels
- Calorimeter(s): 48+96 channels
- Scintillators: 12+12+18 channels
- Oherenkovs: gas & aerogel, 10+26 channels


#### BigBite spectrometer (3rd arm)



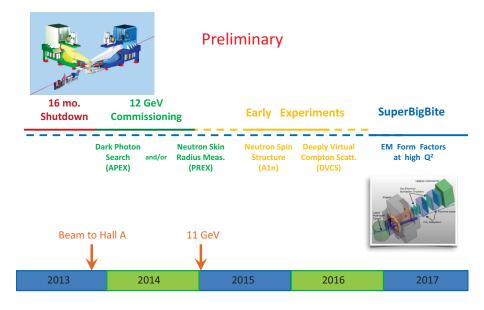
- Horizontal Drift Chambers (MWDCs): 3246 chan. total
- Calorimeters: 48+48 channels
- Scintillator: 56 channels

# Hall A SuperBigbite Spectrometer (SBS)

B. Wojtsekhowski, G. Cates, et al.



- Set of components for flexible medium-acceptance spectrometer configuration
- GEM trackers for high-rate environment (500 kHz/cm<sup>2</sup>), up to  $\approx$  100k channels total
- Proposals approved for
  - ▶ EM form factor measurements up to  $Q^2 \approx 10 \text{ GeV}^2$
  - SIDIS/Transversity
- Recently fully approved by DOE
- Data taking tentatively starting in 2016


# Physics Topics in Hall A

- Transverse Hadron Structure
  - ▶ Nucleon electromagnetic form factors  $G_{E/M}^{n/p}$
- 2 Longitudinal Hadron Structure
  - g<sub>1</sub> structure function at high x
  - $ightharpoonup F_2^n/F_2^p$  and d/u ratios
  - Deuteron tensor structure function b<sub>1</sub>
- 3D Hadron Structure
  - Generalized Parton Distributions (GPDs)
  - ► Transverse Momentum Distributions (TMDs)
- 4 Hadrons and Cold Nuclear Matter
  - Short-range correlations
  - Hypernuclei
- Standard Model and Fundamental Symmetries
  - ▶ Ultra-precise measurement of  $\sin^2 \theta_W$
  - Dark photon search
  - Neutron skin radius of heavy nuclei
  - Axial vector quark couplings
  - Charge symmetry violation

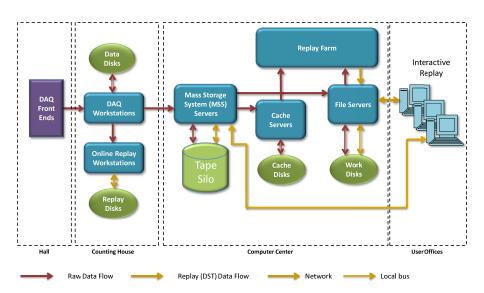
## Traditional Hall A Physics Analysis "Mode of Operation"

- Each experiment typically employs
  - ▶ Base equipment (e.g. HRSs, targets) in varying configurations
  - Add-on equipment, both existing and new (e.g. RICH, photon calorimeter, neutron detector, etc.)
  - Experiment-specific electronics and trigger setup
- Requires highly modular analysis software. Framework with modules for all "6 GeV" standard components exists (see later in this talk)
- Calibration and analysis software for add-on equipment usually provided by users (members of the experiment's collaboration)
  - Effort typically relatively small
  - Users routinely have best expertise with new or specialized equipment
- Users encouraged, but not required, to write code compatible with the standard Hall A analysis framework. Hall A software experts provide support with code integration, if needed.

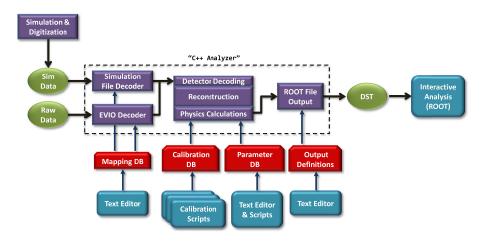
# Timeline of Early 12 GeV Hall A Experiments (R. Michaels)



# Raw Trigger & Data Rates


#### Preliminary schedule & numbers

| Experiment       | APEX <sup>1</sup> | $A_1^n$     | DVCS           |                 | SBS     |         |        |  |
|------------------|-------------------|-------------|----------------|-----------------|---------|---------|--------|--|
|                  |                   |             |                | $G_E^n$         | $G_M^n$ | $G_E^p$ | Transv |  |
| PAC number 12-   | 10-009            | 06-122      | 06-114         | 09-016          | 09-019  | 07-109  | 09-018 |  |
| Config           | L+R(CI)           | L+R(SA)     | $L+\gamma Cal$ | BBG+ND          | BBG+ND  | SBS+BC  | SBS+BB |  |
| PAC days         | 34                | 23          | 100            | 58              | 48      | 60      | 64     |  |
| Schedule         | 2014/2015         |             |                | —— 2016/2018 —— |         |         |        |  |
| Evt size (kB)    | 4                 | 2           | 30             | 30              | 20      | 120     | 5      |  |
| Trig rate (kHz)  | 5                 | $2\times10$ | 0.5            | 2               | 2       | 1       | 5      |  |
| Data rate (MB/s) | 20                | 40          | 15             | 60              | 40      | 120     | 25     |  |


L: L-HRS, R: R-RHS, BB: BigBite, BBG: BB(GEM), ND: neutron det, SBS: SuperBigBite, BC: BigCal, Cl: coinc., SA: sing. arm

<sup>&</sup>lt;sup>1</sup>PREX requirements are negligible compared to APEX

### Data Flow



### Main Reconstruction Software



### Hall A "C++ Analyzer"

- C++/ROOT-based framework
- "Straightforward" event-by-event replay
- In production use since 2003
- Highly modular
  - "Everything is a plug-in"
  - Dynamic run-time instantiation of objects representing the configuration and physics of the experiment
  - Dynamic run-time loading of external module libraries
  - Software Development Kit (SDK) available
- Supported on Linux, Mac OS X, Solaris, 32-bit & 64-bit
- Limitations
  - ▶ single-threaded → Plan: multi-threaded/multi-process by 2013
  - ▶ not distributed → no need anticipated
- Recently begun shared development with Hall C

# Additional Software (mostly user-supported)

- Parity-violation experiments (incl. PREX): "Parity Analyzer" (PAN)
  - ROOT/C++-based
  - ► Independent of standard analyzer
  - Extensively tested in series of prior experiments. Considered ready.

#### DVCS

- Extensive add-on library to standard analyzer
- Waveform analysis with relatively high CPU requirements
- ▶ Well tested in 6 GeV experiment. Considered essentially ready.
- Polarimeter analysis (Compton, Møller)
  - Standalone code
  - Supported by Hall A staff
  - Generally ROOT/C++-based
  - ▶ Minor modifications (*e.g.* support for new front-ends) may be required for 12 GeV. Manpower allocated.
- SBS reconstruction software → next slide

### SBS Reconstruction Software

- Pipelined electronics decoder
  - ▶ SBS plans extensive use of pipelined electronics
  - ▶ Plan to use custom pipelined front-end for APV25 GEM readout
  - ▶ Decoder software to be written for both standard and custom modules
- GEM track reconstruction
  - Prototype reconstruction code exists
  - Feasibility for high-rate SBS environment demonstrated for SBS Technical Review, using Monte Carlo input
  - ▶ Needs further testing & refinement, especially with real data
- Calorimeter cluster reconstruction
  - Several calorimeter setups proposed for the different SBS experiments (hadron calo, lead-glass calo)
  - "GEp(5)" trigger relies heavily on hadron calorimeter cluster detection
  - ▶ At least some cluster analysis software will need to be written. Different algorithms needed for different calorimeters.
- Various user groups (CMU, INFN, UVa, etc.) have taken responsibility for these software projects (cf. SBS Program Management Plan)

### Calibrations, Data Quality Checks, Prompt Analysis

- Instant replay of raw data from local disks on counting house cluster
- $\bullet$  Replay usually in real time  $\to$  expected to be possible up until high-rate SBS experiments
- Online replay uses the same reconstruction software as offline/farm replay
- Calibrations
  - done on counting house machines or on replay farm, depending on required processing power
  - some standard scripts available
  - custom scripts written for specific experiments by users
- Data Quality Checks via customizable interactive viewer

#### Simulations

- Typically low volume
- Typically run on user desktops or off-site, but some farm use.
- Existing frameworks
  - ► SIMA (Hall C's SIMC adapted to Hall A): matrix multiplication for particle transport through spectrometers, no digitization
  - MCEEP: similar to SIMA/SIMC, unmaintained
  - ▶ GEMC: Geant4-based Hall B development, adopted by some future large-installation experiments in Hall A (SoLID)
  - ▶ SBSsim: Geant4 SBS simulation, maintained by/run at INFN
- Highly specific for each experiment → largely user-supported
- Spectrometer-based experiments (i.e. early exp'ts through 2015) well simulated with matrix-based codes
- GEMC computing requirements being collected. Modest so far, but expected to increase.

#### Reconstruction Software Status & Tasks

- Essentially ready for early experiments (though 2015)
- ullet SBS software still largely undeveloped, needed by  $\geq 2016$
- If APEX runs, "must" do before commissioning experiments:
  - ▶ VDC track reconstruction for APEX high-rate environment  $(\approx 1 \text{ kHz/cm}^2)$ 
    - ★ Code written and successfully tested with test run data
    - ★ Still need to integrate into mainline analyzer (database support etc.)
    - ★ Details this afternoon, if requested
- "Should" do before commissioning, "must" do before SBS
  - Analyzer parallelization
  - Support for pipelined JLab 12GeV DAQ & electronics

# Reconstruction Software Status & Tasks Summary

| Experiment                  | Base Software      | Required Add-Ons                                                                                                                                                                    | Required By |
|-----------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| APEX                        | C++ Analyzer       | High-rate VDC track reconstruction                                                                                                                                                  | mid-2013    |
| PREX                        | PAN & C++ Analyzer | None                                                                                                                                                                                | n/a         |
| A <sub>1</sub> <sup>n</sup> | C++ Analyzer       | None                                                                                                                                                                                | n/a         |
| DVCS                        | C++ Analyzer       | Photon detector analysis (DVCS library)                                                                                                                                             | n/a         |
| SBS program                 | C++ Analyzer       | <ul> <li>Analyzer parallelization</li> <li>Pipelined electronics</li> <li>decoder</li> <li>GEM track reconstruction</li> <li>Calorimeter cluster</li> <li>reconstruction</li> </ul> | 2016        |

Red: not yet written Purple: exists, but incomplete and/or not yet fully tested/integrated

# Software Management

| Project / Subsystem                     | Responsible / Contact |                               |  |  |
|-----------------------------------------|-----------------------|-------------------------------|--|--|
|                                         | Staff                 | User                          |  |  |
| C++ Analyzer development & coordination | O. Hansen             |                               |  |  |
| Front-end decoders                      | A. Camsonne           |                               |  |  |
| Optics calibrations                     | D. Higinbotham        |                               |  |  |
| Compton polarimeter                     | S. Nanda              |                               |  |  |
| Møller polarimeter                      | J. Gomez              | S. Glamazdin (Kharkov)        |  |  |
| APEX VDC track reconstruction           | O. Hansen             | S. Riordan (UMass)            |  |  |
| Parity Analyzer                         | R. Michaels           | R. Holmes (Syracuse)          |  |  |
| DVCS analysis                           |                       | C. Muñoz-Camacho<br>(Orsay)   |  |  |
| SBS Program                             |                       |                               |  |  |
| Overall coordination                    | B. Wojtsekhowski      |                               |  |  |
| GEM track reconstruction                |                       | INFN Rome, Carnegie<br>Mellon |  |  |
| GEM data analysis (calibration)         |                       | INFN Catania, UVa             |  |  |
| Hadron calorimeter analysis             |                       | Carnegie Mellon               |  |  |
| Coordinate detector analysis            |                       | William & Mary                |  |  |

#### Collaboration Resources

- Annual "Analysis Workshop" in conjunction with collaboration meeting
- Extensive web resources at http://hallaweb.jlab.org/podd/
  - Web-based user guide
  - Example scripts
  - ▶ ROOT THtml reference documentation
  - Software development kit (SDK)
- Hall A Wiki at https://hallaweb.jlab.org/wiki/
- Bi-weekly meetings with Hall C

# Summary of Hall A Computing Requirements

Anticipated SciComp resource usage assumptions & requirements Preadsheet

|                              | 2013<br>g2p replay | 2014<br>APEX | 2015<br><i>A</i> <sub>1</sub> <sup>n</sup> | 2016<br>DVCS | 2017<br>SBS |
|------------------------------|--------------------|--------------|--------------------------------------------|--------------|-------------|
| Event rate (kHz)             | 0                  | 5            | 20                                         | 0.5          | 2           |
| Event size (kB)              | 0                  | 4            | 2                                          | 30           | 20          |
| Active data taking (days)    | 0                  | 17           | 55                                         | 109          | 109         |
| Raw events per year          | 0                  | 7e9          | 9e10                                       | 5e9          | 2e10        |
| Raw data per year (TB)       | 0                  | 29           | 189                                        | 142          | 377         |
| Time per event/core (ms)     | 2                  | 10           | 2                                          | 30           | 20          |
| Passes through data          | 1                  | 2            | 3                                          | 3            | 3           |
| Years to analyze             | 1                  | 2            | 2                                          | 3            | 3           |
| Replay duty factor           | 50%                | 50%          | 50%                                        | 75%          | 75%         |
| Output held on work disk     | 10%                | 20%          | 20%                                        | 20%          | 10%         |
| Calculated Totals            |                    |              |                                            |              |             |
| Farm cores (2011 vintage)    | 6                  | 8            | 17                                         | 33           | 22          |
| Raw+cooked data to tape (TB) | 250                | 170          | 410                                        | 660          | 900         |
| Work disk storage (TB)       | 25                 | 17           | 44                                         | 104          | 66          |

# Summary & Conclusions

- Hall A has a mature software framework. In production use for over 8 years.
- Hall A reconstruction software essentially ready for early 12 GeV experiments through 2015
- SBS project does require extensive software development. Broad responsibilities for these tasks have been assigned.
- Hall A computing resource requirements through 2017 relatively modest