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C++ Analyzer Overview

Standard Hall A analysis software since 2003
Class library on top of ROOT

Toolbox of analysis modules

Predefined modules for generic analysis tasks and standard Hall A
equipment

Analysis controlled via interpreted or compiled C++ scripts
Special emphasis on modularity

» “Everything is a plug-in"

» User code separate from core code

> Load external user libraries dynamically at run time

» Users write no more than the code really needed

» Core analyzer suitable for fixed installation, like ROOT itself
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http://root.cern.ch

Analysis Objects

Any class that produces “results”

Every analysis object has unique name, e.g. R.sl

Results stored in “global variables”, prefixed with name,
e.g. R.sl.nhits

THaAnalysisObject common base class:

» Support functions for database access
» Support functions for global variable handling

Actual objects implement various virtual functions
DefineVariables ()

ReadDatabase ()

Init()

etc.

v

v vy
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Types of Analysis Objects

@ "“Detector”

» Code/data for analyzing a type of detector.
Examples: Scintillator, Cherenkov, VDC, BPM
» Embedded in Apparatus or standalone

e “Apparatus” / “Spectrometer”

» Collection of Detectors

» Combines data from detectors

» “Spectrometer”: Apparatus with support for tracks and standard
Reconstruct () function

@ "Physics Module”

» Combines data from several apparatuses

» Typical applications: kinematics calculations, vertex finding,
coincidence time extraction

» Special applications: debugging, event display

» Toolbox design: Modules can be chained, combined, used as needed
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C++ Analyzer Example Physics Module Chain
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C++ Analyzer User Interface

Example Replay Script

// Set up right arm HRS with the detectors we’re interested in

THaHRS* HRSR = new THaHRS("R", "Right HRS");

//HRSR->AddDetector ( new THaVDC("vdc", "Vertical Drift Chamber") ); // already in THaHRS
HRSR->AddDetector( new THaCherenkov("cer", "Gas Cherenkov counter" ));
HRSR->AddDetector( new THaShower("ps", "Pre-shower pion rej."));

HRSR->AddDetector( new THaShower("sh", "Shower pion rej."));

gHaApps->Add (HRSR) ;

// Ideal beam (perfect normal incidence and centering)
THaldealBeam* ib = new THaldealBeam("IB", "Ideal beam");
gHaApps->Add (ib) ;

// Simple kinematics and vertex calculations

Double_t mass_tg = 12%931.494e-3; // C12 target

THaPhysicsModule* EKR = new THaElectronKine("EKR","Electron kinematics R",”R",mass_tg);
THaReactionPoint* rpr = new THaReactionPoint("rpr","Reaction vertex R","R","IB");
gHaPhysics->Add (EKR) ;

gHaPhysics->Add(rpr);

// The CODA data file we want to replay
THaRun* run = new THaRun("/rawdata/run_12345.dat");

// Set up and run standard analyzer (event loop)

THaAnalyzer* analyzer = new THaAnalyzer;

analyzer->SetOdefFile ("HRSR.odef"); // Define output
analyzer->Process(run) ; // Process all invents in the input
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C++ Analyzer Output (DST)

e ROOT format

@ Contents can be dynamically defined for each replay via input file

Example Output Definition File

# ---- Example e12345.odef -------------

# Variables to appear in the tree.
variable L.s1.1t[4]
variable L.sl.rt

# The ’block’ variables: All data in Right HRS go to tree.
block R.*

# Formulas can be scalers or vectors.
# Ltd4a is a scaler.
formula Ltda 5.*L.s1.1t[4]

# Cuts can be defined globally and used in histograms.
# Cut Cl1 is a scaler. Data is 0 or 1.
cut C1 L.s1.1t[4]>1350

# Histograms can involve formulas, variables, and cuts.
# TH1F, TH1D, TH2F, TH2D supported.
THIF rvin ’L-arm vdc hits on V1’ L.vdc.vl.nhit 10 0 10

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details

Ext. Review, June 7, 2012

9/23



C++ Analyzer Databases

Currently only flat text files supported

Key/value pairs with support for scalars, arrays, matrices, strings

Support for time-dependent values (essential!)

History functionality available if files kept under version control (CVS)

Plan to investigate relational database system, e.g. Hall D’s

Example Database File

B.mwdc.planeconfig = ul ulp x1 x1p vi vip \
u2 x2 v2 \
u3 udp x3 x3p v3 v3p

# "Crate map": crate slot_lo slot_hi model# resol nchan
B.mwdc.cratemap = 3 6 21 1877 500

4 4 11 1877 500

4 17 24 1877 500

--[ 2008-02-31 23:59:45 ]

B.mwdc.maxslope = 2.5
B.mwdc.size =2.0 0.5 0.0
B.mwdc.x1.size =1.4 0.35 0.0
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C++ Analyzer Limitations

o Essentially single-threaded

» Plan to implement automatic event distribution to multiple “worker”
subprocesses

» Memory footprint not a major issue, but partially non-reentrant code is
— fork() subprocesses instead of creating threads

@ Support for 12 GeV DAQ environment not yet available

» CODA 3 EVIO-library
» Decoders for JLab 12 GeV pipelined electronics
» NB: Event “re-assembler” for pipelined data streams to be provided by

DAQ group. This is an essential component for running in pipelined
mode (SBS and beyond).

@ ROOT file output can be a performance bottleneck

» Minor issue since ratio of reconstruction to output time is expected to
rise with more demanding experiments

» Mostly due to overbroad output definition (too many variables)

» Coding bottlenecks probably correctable (known inefficiencies)
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HRS VDC Tracking |

@ Vertical Drift Chambers, optimized for
precision measurement of single tracks

@ Standard tracking systems for both HRSs

@ Two wire directions (u and v), 368 wires
per plane, 4.24 mm wire spacing

SIDEVIEW / Upper VDC
/ T

0335m 0230m 0335m
nominal 45° particle trajectory

7 1

I
Lower VDC

TOPVIEW

2118m

Cross-over point X,

shortest drift

perpendicular distance

@ Fit to avg. 5 independent time

measurements per plane yield a position

resolution of ~ 225 ym FWHM
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HRS VDC Tracking Il: Algorithm

@ Match v and v clusters in each chamber
» Obvious if only one cluster per plane
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HRS VDC Tracking Il: Algorithm

@ Match u and v clusters in each chamber
» Obvious if only one cluster per plane
» If multiple clusters, geometrical/angle information may help
» Advanced algorithm takes advantage of timing information form
3-parameter cluster fits to resolve most remaining ambiguities
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HRS VDC Tracking Il: Algorithm

@ Match u and v clusters in each chamber
» Obvious if only one cluster per plane
» If multiple clusters, geometrical/angle information may help
» Advanced algorithm takes advantage of timing information form
3-parameter cluster fits to resolve most remaining ambiguities

@ Connect matched points in top and bottom,
requiring consistent track angles

o Calculate track parameters at target by
multiplying focal plane tracks variables with
reverse transport matrix
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HRS VDC Tracking Ill: 3-Parameter Cluster Fit
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Required for APEX: expect = 2 accidental tracks per trigger

Code written, still needs testing/debugging and integration
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SBS Track Reconstruction Algorithm

@ Challenge: GEM front trackers operating at up to
500 kHz/cm? count rate

@ Reconstruction algorithm implemented in 2010/11
based on Hall A BigBite MWDC code
@ APV25 decoder & analysis
> Cluster finding
> Peak fitting / noise rejection
@ TreeSearch in coordinate projections — roads

> Very fast recursive template matching algorithm

> Efficiently finds straight lines of hits (within
configurable bin width)

> Also used at HERMES and JLab (Qweak experiment)

@ Correlation of roads from different projections, either

> geometrically (3+ projections); or

> via hit amplitude & timing in shared readout planes
(2 projections)

> Monte Carlo indicates that 2 projections are sufficient

@ 3D fit of correlated hits

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details
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SBS Track Reconstruction Flow
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SBS TraCking Monte Car|0 (with V. Mamyan, CMU)

Front tracker GEM strip occupancy Track reconstruction accuracy
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HRS Optics Calibrations

@ Requirements

» Optics runs with sieve slit collimator and multifoil target
» Multi-dimensional minimization procedure for reconstructed residuals

@ General-purpose minimization software package available

optimize++

ROOT application, written in C++

Uses Minuit as underlying minimization engine

Very well tested over almost a decade for a broad variety of
experimental configurations (optics tunes)

v vy VvYy

@ Optics calibration of BigBite and other spectrometers not as well
tested and no general tool readily available, but similar principle
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VDC Calibration Tools

VDC time offsets VDC time-to-distance conversion
1] 7 D E PVDIS run 26437, VDC HV = -4kV
So.02f
E [
s [
gotsf
e
ﬁ B
J J So.01-
| i "T;.sssf
. £ -
IED S
N I F
et ) ]
00055002 0.004 0.006 0.008 0.01 0.012'3.014 0.016 0.018 0.02

[ wire vs time | eal track distance (m)

@ Automated fit to analytic expression
approximating time-to-distance relation

@ Two linear sections with dependence on
1/tan(track angle)

@ Attempts to obtain flat drift distance
distribution

@ Automated script (edge search) operating

on special calibration runs (white spectrum) @ Can operate on same calibration runs as
time offset calibration
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Online Histogramming

“OnlineGUI" (B. Moffit, 2007) €I CII
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@ Compiled ROOT script

@ Visualizes DST (ROOT) output after
prompt replay

@ Easy configuration via text input file

@ Reference histograms (shaded)
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Source Code Control & Build System

@ Source code revision control

C++ Analyzer under CVS since 2001

Full file history frequently useful

CVS may also provide text file database history (users’ choice)
May migrate to git for compatibility with Hall C

vV vyVvVYyy

@ Developer tools

» Standard GNU build tools (make, g++ compiler)
» Debugging similarly based on open source tools (gdb, valgrind)
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Documentation & Developer Support

@ Web-based user guide
o THtml-generated reference documentation

e Example replay scripts (from previous experiments)
@ Software development kit (SDK)

» Facilitates rapid development of new apparatus, detector, and/or
physics module classes. Provides skeleton code for each module type.

» User code is placed in a shared library (plugin) that can be loaded
dynamically at run time

» No modifications of the core analyzer code necessary
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Areas of Concern, Weaknesses

@ SBS software development path & milestones not well defined at this
time

@ HRS calibration procedures not well centralized. Certain common
tasks (e.g. PID) tend to be re-done/re-invented by each experiment.
But: Users seem to like it that way.

@ Smaller issues

» Documentation not as good as it could be, especially for beginners
» API and database format of C++ Analyzer classes sometimes
inconsistent. Could benefit from cleanup.
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