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Hall A Data & Analysis Flow
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C++ Analyzer Overview

Standard Hall A analysis software since 2003
Class library on top of ROOT
Toolbox of analysis modules
Predefined modules for generic analysis tasks and standard Hall A
equipment
Analysis controlled via interpreted or compiled C++ scripts
Special emphasis on modularity

I “Everything is a plug-in”
I User code separate from core code
I Load external user libraries dynamically at run time
I Users write no more than the code really needed
I Core analyzer suitable for fixed installation, like ROOT itself
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Analysis Objects

Any class that produces “results”
Every analysis object has unique name, e.g. R.s1
Results stored in “global variables”, prefixed with name,
e.g. R.s1.nhits

THaAnalysisObject common base class:
I Support functions for database access
I Support functions for global variable handling

Actual objects implement various virtual functions
I DefineVariables()
I ReadDatabase()
I Init()
I etc.
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Types of Analysis Objects

“Detector”
I Code/data for analyzing a type of detector.

Examples: Scintillator, Cherenkov, VDC, BPM
I Embedded in Apparatus or standalone

“Apparatus” / “Spectrometer”
I Collection of Detectors
I Combines data from detectors
I “Spectrometer”: Apparatus with support for tracks and standard

Reconstruct() function

“Physics Module”
I Combines data from several apparatuses
I Typical applications: kinematics calculations, vertex finding,

coincidence time extraction
I Special applications: debugging, event display
I Toolbox design: Modules can be chained, combined, used as needed
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C++ Analyzer Example Physics Module Chain
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C++ Analyzer User Interface
Example Replay Script
// Set up right arm HRS with the detectors we’re interested in
THaHRS* HRSR = new THaHRS("R", "Right HRS");
//HRSR->AddDetector( new THaVDC("vdc", "Vertical Drift Chamber") ); // already in THaHRS
HRSR->AddDetector( new THaCherenkov("cer", "Gas Cherenkov counter" ));
HRSR->AddDetector( new THaShower("ps", "Pre-shower pion rej."));
HRSR->AddDetector( new THaShower("sh", "Shower pion rej."));
gHaApps->Add(HRSR);

// Ideal beam (perfect normal incidence and centering)
THaIdealBeam* ib = new THaIdealBeam("IB", "Ideal beam");
gHaApps->Add(ib);

// Simple kinematics and vertex calculations
Double_t mass_tg = 12*931.494e-3; // C12 target
THaPhysicsModule* EKR = new THaElectronKine("EKR","Electron kinematics R","R",mass_tg);
THaReactionPoint* rpr = new THaReactionPoint("rpr","Reaction vertex R","R","IB");
gHaPhysics->Add(EKR);
gHaPhysics->Add(rpr);

// The CODA data file we want to replay
THaRun* run = new THaRun("/rawdata/run_12345.dat");

// Set up and run standard analyzer (event loop)
THaAnalyzer* analyzer = new THaAnalyzer;
analyzer->SetOdefFile("HRSR.odef"); // Define output
analyzer->Process(run); // Process all invents in the input
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C++ Analyzer Output (DST)

ROOT format
Contents can be dynamically defined for each replay via input file

Example Output Definition File
# –––– Example e12345.odef –––––––––––––

# Variables to appear in the tree.
variable L.s1.lt[4]
variable L.s1.rt

# The ’block’ variables: All data in Right HRS go to tree.
block R.*

# Formulas can be scalers or vectors.
# Lt4a is a scaler.
formula Lt4a 5.*L.s1.lt[4]

# Cuts can be defined globally and used in histograms.
# Cut C1 is a scaler. Data is 0 or 1.
cut C1 L.s1.lt[4]>1350

# Histograms can involve formulas, variables, and cuts.
# TH1F, TH1D, TH2F, TH2D supported.
TH1F rv1n ’L-arm vdc hits on V1’ L.vdc.v1.nhit 10 0 10
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C++ Analyzer Databases

Currently only flat text files supported

Key/value pairs with support for scalars, arrays, matrices, strings

Support for time-dependent values (essential!)

History functionality available if files kept under version control (CVS)

Plan to investigate relational database system, e.g. Hall D’s

Example Database File
B.mwdc.planeconfig = u1 u1p x1 x1p v1 v1p \

u2 x2 v2 \
u3 u3p x3 x3p v3 v3p

# "Crate map": crate slot_lo slot_hi model# resol nchan
B.mwdc.cratemap = 3 6 21 1877 500 96 \

4 4 11 1877 500 96 \
4 17 24 1877 500 96

––[ 2008-02-31 23:59:45 ]
B.mwdc.maxslope = 2.5

B.mwdc.size = 2.0 0.5 0.0
B.mwdc.x1.size = 1.4 0.35 0.0
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C++ Analyzer Limitations
Essentially single-threaded

I Plan to implement automatic event distribution to multiple “worker”
subprocesses

I Memory footprint not a major issue, but partially non-reentrant code is
→ fork() subprocesses instead of creating threads

Support for 12 GeV DAQ environment not yet available
I CODA 3 EVIO-library
I Decoders for JLab 12 GeV pipelined electronics
I NB: Event “re-assembler” for pipelined data streams to be provided by

DAQ group. This is an essential component for running in pipelined
mode (SBS and beyond).

ROOT file output can be a performance bottleneck
I Minor issue since ratio of reconstruction to output time is expected to

rise with more demanding experiments
I Mostly due to overbroad output definition (too many variables)
I Coding bottlenecks probably correctable (known inefficiencies)
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HRS VDC Tracking I

Vertical Drift Chambers, optimized for
precision measurement of single tracks
Standard tracking systems for both HRSs
Two wire directions (u and v), 368 wires
per plane, 4.24 mm wire spacing45o

45o

45o

nominal 45o particle trajectory

Upper VDC

Lower VDC

nominal 45o particle trajectory

SIDE VIEW

TOP VIEW

nominal 45o particle trajectory

0.288 m

2.118 m

0.230 m0.335 m 0.335 m

Fig. 1. S
hemati
 layout of the VDCs (not to s
ale). The re
tangular area of ea
hwire frame aperture is 2.118 m � 0.288 m (see 3.2.1). The U and V sense wires areorthogonal to ea
h other and lie in the horizontal plane of the laboratory. They arein
lined at an angle of 45Æ with respe
t to both the dispersive and non-dispersivedire
tions. The lower VDC 
oin
ides (essentially) with the spe
trometer fo
al plane.The verti
al o�set between like wire planes is 0.335 m.27

θ
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4 5

cross-over point x0

shortest drift

 

 

perpendicular distance

Fig. 14. A typi
al tra
k resulting in a 5-
ell event. The arrowed lines are paths ofleast time for the ionization ele
trons to travel from the traje
tory to the sense wires.The dot/dashed lines are the 
orresponding proje
tion distan
es used to re
onstru
tthe traje
tory. The ellipses represent the regions near the wires where the �eld linesmake a transition from parallel to radial. The proportions of the ellipses are takenfrom GARFIELD models [13,14℄.
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Fit to avg. 5 independent time
measurements per plane yield a position
resolution of ≈ 225 µm FWHM
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HRS VDC Tracking II: Algorithm

Match u and v clusters in each chamber
I Obvious if only one cluster per plane

I If multiple clusters, geometrical/angle information may help
I Advanced algorithm takes advantage of timing information form

3-parameter cluster fits to resolve most remaining ambiguities

Connect matched points in top and bottom,
requiring consistent track angles
Calculate track parameters at target by
multiplying focal plane tracks variables with
reverse transport matrix (0, 0)

(U1, 0)

   (U2, 0)

(0, V1)

(0, V2)  dU

ΘU

ΘV

(U1,V1) 

        (U2, V2)

Fig. 16. Geometri
al proje
tion of the traje
tory 
oordinates measured by the V1plane into the U1 plane using the global angles �U and �V .
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HRS VDC Tracking III: 3-Parameter Cluster FitSearching for New Vector Bosons A′ Decaying to e+e− p. 35

Time mismatch

.

.

Figure 20: The illustration of the VDC drift pattern. The real track (the solid red line) has a well
matched “time” between the “upper” and the “lower” times. The accidental track (the dashed
violet line) has a large mismatch.

0.2 per event. Because this rejection factor is independent for two VDC chambers, the
probability of an accidental track being reconstructed in both VDCs (four planes) will be at
most 0.05. In these remaining 5% events, the real track will be determined using the fact
that its trajectory intersects the proper scintillator paddle of the high resolution plane that
is segmented into 16 paddles. As a result, the probability of a false track drops below 0.005.

For an average event, the wire multiplicity is 4.5, so the probability of having two tracks
inside one group (5 wires) is less than 3%. Such events will most likely be rejected and lead
to only a small tracking inefficiency.

10 Conclusion

We request 33 days (30 days of beam) to measure the electron-positron pair mass spectrum
and search for new gauge bosons A′ in the mass range 65 MeV < mA′ < 550 MeV that have
weak coupling to the electron. Parametrizing this coupling by the ratio α′/α that controls the
A′ production cross-section, this experiment would probe α′/α as small as ∼ (6− 8)× 10−8

at masses from 65 to 300 MeV, and α′/α ∼ (2 − 3) × 10−7 at masses up to 525 MeV,
making it sensitive to production rates 10–1000 times lower than the best current limits set
by measurements of the anomalous muon magnetic moment and by direct searches at BaBar.
The experiment uses the JLab electron beam in Hall A at energies of 1.1, 2.302, 3.3, and
4.482 GeV incident on a long (50 cm) thin tilted tungsten wire mesh target, and both arms
of the High Resolution Spectrometer at angles between 5.0◦ and 5.5◦ relative to the nominal
target position. The experiment can determine the mass of an A′ to an accuracy of ∼ 1–2
MeV.

Non-linear 3-parameter fit to extract track time offset t0
Computationally expensive: ca. ×20 slower than 2-parameter fit
≈ 20 ns FWHM time resolution → background rejection factor ≈ 10-20
Required for APEX: expect ≈ 2 accidental tracks per trigger
Code written, still needs testing/debugging and integration
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SBS Track Reconstruction Algorithm
Challenge: GEM front trackers operating at up to
500 kHz/cm2 count rate
Reconstruction algorithm implemented in 2010/11
based on Hall A BigBite MWDC code

APV25 decoder & analysis
I Cluster finding
I Peak fitting / noise rejection

TreeSearch in coordinate projections → roads
I Very fast recursive template matching algorithm
I Efficiently finds straight lines of hits (within

configurable bin width)
I Also used at HERMES and JLab (Qweak experiment)

Correlation of roads from different projections, either
I geometrically (3+ projections); or
I via hit amplitude & timing in shared readout planes

(2 projections)
I Monte Carlo indicates that 2 projections are sufficient

3D fit of correlated hits

Chambers configuration
to each chamber configuration

Front Tracker
Geometry

x6

Back Trackers Geometry

X(4+4)

GEp(5) SBS
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SBS Track Reconstruction Flow

Patterns

Hits Bins

Hits in 3D

3D Track

Decoder
Finding Building

2D 

Fitting
Final tracks

3D

Cluster Hitpattern
TreeSearch

De−Cloning

2D Track

Fitting

Projection

Matching

3D Track

De−CloningCandidates

file
ROOT ADC Strips

Roads

Projections

Track

Data
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SBS Tracking Monte Carlo (with V. Mamyan, CMU)

Front tracker GEM strip occupancy

Tracking Efficiency

� �

Track reconstruction accuracy

Realistic digitization of GEM &
electronics response
> 90% tracking efficiency despite > 70%
raw occupancy!
≈ 40 µm reconstruction accuracy
Needs further testing, esp. with real data
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HRS Optics Calibrations

Requirements
I Optics runs with sieve slit collimator and multifoil target
I Multi-dimensional minimization procedure for reconstructed residuals

General-purpose minimization software package available
I optimize++
I ROOT application, written in C++
I Uses Minuit as underlying minimization engine
I Very well tested over almost a decade for a broad variety of

experimental configurations (optics tunes)

Optics calibration of BigBite and other spectrometers not as well
tested and no general tool readily available, but similar principle
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VDC Calibration Tools
VDC time offsets

Automated script (edge search) operating
on special calibration runs (white spectrum)

VDC time-to-distance conversion

Automated fit to analytic expression
approximating time-to-distance relation
Two linear sections with dependence on
1/tan(track angle)
Attempts to obtain flat drift distance
distribution
Can operate on same calibration runs as
time offset calibration
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Online Histogramming
“OnlineGUI” (B. Moffit, 2007) doc web

Compiled ROOT script
Visualizes DST (ROOT) output after
prompt replay
Easy configuration via text input file
Reference histograms (shaded)
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Source Code Control & Build System

Source code revision control
I C++ Analyzer under CVS since 2001
I Full file history frequently useful
I CVS may also provide text file database history (users’ choice)
I May migrate to git for compatibility with Hall C

Developer tools
I Standard GNU build tools (make, g++ compiler)
I Debugging similarly based on open source tools (gdb, valgrind)
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Documentation & Developer Support

Web-based user guide web

THtml-generated reference documentation web

Example replay scripts (from previous experiments)

Software development kit (SDK)
I Facilitates rapid development of new apparatus, detector, and/or

physics module classes. Provides skeleton code for each module type.
I User code is placed in a shared library (plugin) that can be loaded

dynamically at run time
I No modifications of the core analyzer code necessary
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Areas of Concern, Weaknesses

SBS software development path & milestones not well defined at this
time

HRS calibration procedures not well centralized. Certain common
tasks (e.g. PID) tend to be re-done/re-invented by each experiment.
But: Users seem to like it that way.

Smaller issues
I Documentation not as good as it could be, especially for beginners
I API and database format of C++ Analyzer classes sometimes

inconsistent. Could benefit from cleanup.
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