Hall A Software & Analysis
Technical Details

Ole Hansen

Jefferson Lab

JLab 12 GeV Software Review
Afternoon Session
June 7, 2012

J cmmﬁ‘

efferson Lab _ S
OThomas Jefferson National Accelerator Facility () LO‘
Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 1/23

Contents

@ Software Framework
© Specific Analysis Algorithms
@ VDC Track Reconstruction
@ SuperBigBite Track Reconstruction
© Calibrations
@ Data Quality Monitoring

© Code Management

@ Concerns & Weaknesses

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 2/23

Hall A Data & Analysis Flow

Simulation &

“C++ Analyzer”

Simulation
File Decoder

Detector Decoding 1 Interactive
Analysis

(ROOT)

ROOT File

Reconstruction
Output

EVIO Decoder Physics Calculations

- Calibration Parameter Output
Mapping DB DB Definitions

Text Editor Text Editor Text Editor

Calibration

Scripts & Scripts

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details

C++ Analyzer Overview

Standard Hall A analysis software since 2003
Class library on top of ROOT

Toolbox of analysis modules

Predefined modules for generic analysis tasks and standard Hall A
equipment

Analysis controlled via interpreted or compiled C++ scripts
Special emphasis on modularity

» “Everything is a plug-in"

» User code separate from core code

> Load external user libraries dynamically at run time

» Users write no more than the code really needed

» Core analyzer suitable for fixed installation, like ROOT itself

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 4/23

http://root.cern.ch

Analysis Objects

Any class that produces “results”

Every analysis object has unique name, e.g. R.sl

Results stored in “global variables”, prefixed with name,
e.g. R.sl.nhits

THaAnalysisObject common base class:

» Support functions for database access
» Support functions for global variable handling

Actual objects implement various virtual functions
DefineVariables ()

ReadDatabase ()

Init()

etc.

v

v vy

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 5/23

Types of Analysis Objects

@ "“Detector”

» Code/data for analyzing a type of detector.
Examples: Scintillator, Cherenkov, VDC, BPM
» Embedded in Apparatus or standalone

e “Apparatus” / “Spectrometer”

» Collection of Detectors

» Combines data from detectors

» “Spectrometer”: Apparatus with support for tracks and standard
Reconstruct () function

@ "Physics Module”

» Combines data from several apparatuses

» Typical applications: kinematics calculations, vertex finding,
coincidence time extraction

» Special applications: debugging, event display

» Toolbox design: Modules can be chained, combined, used as needed

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 6 /23

C++ Analyzer Example Physics Module Chain

Track)
Track Data Energy Loss G
v Kinematics
Correction

(e,e’p)
Kinematics

Electron
Kinematics

Track Data

Transverse Track
s Electron
Position Energy Loss - 5
A Kinematics
Correction

Correction
Reaction Vertex

Beam
Energy Loss
Correction

Beam Data

Hall A 12 GeV Software Details

C++ Analyzer User Interface

Example Replay Script

// Set up right arm HRS with the detectors we’re interested in

THaHRS* HRSR = new THaHRS("R", "Right HRS");

//HRSR->AddDetector (new THaVDC("vdc", "Vertical Drift Chamber")); // already in THaHRS
HRSR->AddDetector(new THaCherenkov("cer", "Gas Cherenkov counter"));
HRSR->AddDetector(new THaShower("ps", "Pre-shower pion rej."));

HRSR->AddDetector(new THaShower("sh", "Shower pion rej."));

gHaApps->Add (HRSR) ;

// Ideal beam (perfect normal incidence and centering)
THaldealBeam* ib = new THaldealBeam("IB", "Ideal beam");
gHaApps->Add (ib) ;

// Simple kinematics and vertex calculations

Double_t mass_tg = 12%931.494e-3; // C12 target

THaPhysicsModule* EKR = new THaElectronKine("EKR","Electron kinematics R",”R",mass_tg);
THaReactionPoint* rpr = new THaReactionPoint("rpr","Reaction vertex R","R","IB");
gHaPhysics->Add (EKR) ;

gHaPhysics->Add(rpr);

// The CODA data file we want to replay
THaRun* run = new THaRun("/rawdata/run_12345.dat");

// Set up and run standard analyzer (event loop)

THaAnalyzer* analyzer = new THaAnalyzer;

analyzer->SetOdefFile ("HRSR.odef"); // Define output
analyzer->Process(run) ; // Process all invents in the input

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012

8/23

C++ Analyzer User Interface

Example Replay Script

// Set up right arm HRS with the detectors we’re interested in

THaHRS* HRSR = new THaHRS("R", "Right HRS");

//HRSR->AddDetector (new THaVDC("vdc", "Vertical Drift Chamber")); // already in THaHRS
HRSR->AddDetector(new THaCherenkov("cer", "Gas Cherenkov counter"));
HRSR->AddDetector(new THaShower("ps", "Pre-shower pion rej."));

HRSR->AddDetector(new THaShower("sh", "Shower pion rej."));

gHaApps->Add (HRSR) ;

// Ideal beam (perfect normal incidence and centering)
THaldealBeam* ib = new THaldealBeam("IB", "Ideal beam");
gHaApps->Add (ib) ;

// Simple kinematics and vertex calculations

Double_t mass_tg = 12%931.494e-3; // C12 target

THaPhysicsModule* EKR = new THaElectronKine("EKR","Electron kinematics R",”R",mass_tg);
THaReactionPoint* rpr = new THaReactionPoint("rpr","Reaction vertex R","R","IB");
gHaPhysics->Add (EKR) ;

gHaPhysics->Add(rpr);

// The CODA data file we want to replay
THaRun* run = new THaRun("/rawdata/run_12345.dat");

// Set up and run standard analyzer (event loop)

THaAnalyzer* analyzer = new THaAnalyzer;

analyzer->SetOdefFile ("HRSR.odef"); // Define output
analyzer->Process(run) ; // Process all invents in the input

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012

8/23

C++ Analyzer User Interface

Example Replay Script

// Set up right arm HRS with the detectors we’re interested in

THaHRS* HRSR = new THaHRS("R", "Right HRS");

//HRSR->AddDetector (new THaVDC("vdc", "Vertical Drift Chamber")); // already in THaHRS
HRSR->AddDetector(new THaCherenkov("cer", "Gas Cherenkov counter"));
HRSR->AddDetector(new THaShower("ps", "Pre-shower pion rej."));

HRSR->AddDetector (new THaShower("sh", "Shower pion rej."));

gHaApps->Add (HRSR) ;

// Ideal beam (perfect normal incidence and centering)
THaldealBeam* ib = new THaldealBeam("IB", "Ideal beam");
gHaApps->Add (ib) ;

// Simple kinematics and vertex calculations

Double_t mass_tg = 12%931.494e-3; // C12 target

THaPhysicsModule* EKR = new THaElectronKine("EKR","Electron kinematics R",”R",mass_tg);
THaReactionPoint* rpr = new THaReactionPoint("rpr","Reaction vertex R","R","IB");
gHaPhysics->Add (EKR) ;

gHaPhysics->Add(rpr) ;

// The CODA data file we want to replay
THaRun* run = new THaRun("/rawdata/run_12345.dat");

// Set up and run standard analyzer (event loop)

THaAnalyzer* analyzer = new THaAnalyzer;

analyzer->SetOdefFile ("HRSR.odef"); // Define output
analyzer->Process(run) ; // Process all invents in the input

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012

8/23

C++ Analyzer User Interface

Example Replay Script

// Set up right arm HRS with the detectors we’re interested in

THaHRS* HRSR = new THaHRS("R", "Right HRS");

//HRSR->AddDetector (new THaVDC("vdc", "Vertical Drift Chamber")); // already in THaHRS
HRSR->AddDetector(new THaCherenkov("cer", "Gas Cherenkov counter"));
HRSR->AddDetector(new THaShower("ps", "Pre-shower pion rej."));

HRSR->AddDetector (new THaShower("sh", "Shower pion rej."));

gHaApps->Add (HRSR) ;

// Ideal beam (perfect normal incidence and centering)
THaldealBeam* ib = new THaldealBeam("IB", "Ideal beam");
gHaApps->Add (ib) ;

// Simple kinematics and vertex calculations

Double_t mass_tg = 12%931.494e-3; // C12 target

THaPhysicsModule* EKR = new THaElectronKine("EKR","Electron kinematics R",”R",mass_tg);
THaReactionPoint* rpr = new THaReactionPoint("rpr","Reaction vertex R","R","IB");
gHaPhysics->Add (EKR) ;

gHaPhysics->Add(rpr) ;

// The CODA data file we want to replay
THaRun* run = new THaRun("/rawdata/run_12345.dat");

// Set up and run standard analyzer (event loop)

THaAnalyzer* analyzer = new THaAnalyzer;

analyzer->Set0defFile ("HRSR.odef") ; // Define output
analyzer->Process(run) ; // Process all invents in the input

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012

8/23

C++ Analyzer User Interface

Example Replay Script

// Set up right arm HRS with the detectors we’re interested in

THaHRS* HRSR = new THaHRS("R", "Right HRS");

//HRSR->AddDetector (new THaVDC("vdc", "Vertical Drift Chamber")); // already in THaHRS
HRSR->AddDetector(new THaCherenkov("cer", "Gas Cherenkov counter"));
HRSR->AddDetector(new THaShower("ps", "Pre-shower pion rej."));

HRSR->AddDetector (new THaShower("sh", "Shower pion rej."));

gHaApps->Add (HRSR) ;

// Ideal beam (perfect normal incidence and centering)
THaldealBeam* ib = new THaldealBeam("IB", "Ideal beam");
gHaApps->Add (ib) ;

// Simple kinematics and vertex calculations

Double_t mass_tg = 12%931.494e-3; // C12 target

THaPhysicsModule* EKR = new THaElectronKine ("EKR","Electron kinematics R",”R",mass_tg);
THaReactionPoint* rpr = new THaReactionPoint("rpr","Reaction vertex R","R","IB");
gHaPhysics->Add (EKR) ;

gHaPhysics->Add(rpr) ;

// The CODA data file we want to replay
THaRun* run = new THaRun("/rawdata/run_12345.dat");

// Set up and run standard analyzer (event loop)

THaAnalyzer* analyzer = new THaAnalyzer;

analyzer->Set0defFile ("HRSR.odef") ; // Define output
analyzer->Process(run) ; // Process all invents in the input

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012

8/23

C++ Analyzer Output (DST)

e ROOT format

@ Contents can be dynamically defined for each replay via input file

Example Output Definition File

---- Example e12345.odef -------------

Variables to appear in the tree.
variable L.s1.1t[4]
variable L.sl.rt

The ’block’ variables: All data in Right HRS go to tree.
block R.*

Formulas can be scalers or vectors.
Ltd4a is a scaler.
formula Ltda 5.*L.s1.1t[4]

Cuts can be defined globally and used in histograms.
Cut Cl1 is a scaler. Data is 0 or 1.
cut C1 L.s1.1t[4]>1350

Histograms can involve formulas, variables, and cuts.
TH1F, TH1D, TH2F, TH2D supported.
THIF rvin ’L-arm vdc hits on V1’ L.vdc.vl.nhit 10 0 10

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details

Ext. Review, June 7, 2012

9/23

C++ Analyzer Databases

Currently only flat text files supported

Key/value pairs with support for scalars, arrays, matrices, strings

Support for time-dependent values (essential!)

History functionality available if files kept under version control (CVS)

Plan to investigate relational database system, e.g. Hall D’s

Example Database File

B.mwdc.planeconfig = ul ulp x1 x1p vi vip \
u2 x2 v2 \
u3 udp x3 x3p v3 v3p

"Crate map": crate slot_lo slot_hi model# resol nchan
B.mwdc.cratemap = 3 6 21 1877 500

4 4 11 1877 500

4 17 24 1877 500

--[2008-02-31 23:59:45]

B.mwdc.maxslope = 2.5
B.mwdc.size =2.0 0.5 0.0
B.mwdc.x1.size =1.4 0.35 0.0

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details

Ext. Review, June 7, 2012

10 / 23

C++ Analyzer Limitations

o Essentially single-threaded

» Plan to implement automatic event distribution to multiple “worker”
subprocesses

» Memory footprint not a major issue, but partially non-reentrant code is
— fork() subprocesses instead of creating threads

@ Support for 12 GeV DAQ environment not yet available

» CODA 3 EVIO-library
» Decoders for JLab 12 GeV pipelined electronics
» NB: Event “re-assembler” for pipelined data streams to be provided by

DAQ group. This is an essential component for running in pipelined
mode (SBS and beyond).

@ ROOT file output can be a performance bottleneck

» Minor issue since ratio of reconstruction to output time is expected to
rise with more demanding experiments

» Mostly due to overbroad output definition (too many variables)

» Coding bottlenecks probably correctable (known inefficiencies)

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 11 /23

HRS VDC Tracking |

@ Vertical Drift Chambers, optimized for
precision measurement of single tracks

@ Standard tracking systems for both HRSs

@ Two wire directions (u and v), 368 wires
per plane, 4.24 mm wire spacing

SIDEVIEW / Upper VDC
/ T

0335m 0230m 0335m
nominal 45° particle trajectory

7 1

I
Lower VDC

TOPVIEW

2118m

Cross-over point X,

shortest drift

perpendicular distance

@ Fit to avg. 5 independent time

measurements per plane yield a position

resolution of ~ 225 ym FWHM

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012

12 /23

HRS VDC Tracking Il: Algorithm

@ Match v and v clusters in each chamber
» Obvious if only one cluster per plane

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 13 /23

HRS VDC Tracking Il: Algorithm

@ Match u and v clusters in each chamber
» Obvious if only one cluster per plane
» If multiple clusters, geometrical/angle information may help

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 13 /23

HRS VDC Tracking Il: Algorithm

@ Match u and v clusters in each chamber
» Obvious if only one cluster per plane
» If multiple clusters, geometrical/angle information may help
» Advanced algorithm takes advantage of timing information form
3-parameter cluster fits to resolve most remaining ambiguities

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 13 /23

HRS VDC Tracking Il: Algorithm

@ Match u and v clusters in each chamber
» Obvious if only one cluster per plane
» If multiple clusters, geometrical/angle information may help
» Advanced algorithm takes advantage of timing information form
3-parameter cluster fits to resolve most remaining ambiguities

@ Connect matched points in top and bottom,
requiring consistent track angles

o Calculate track parameters at target by
multiplying focal plane tracks variables with
reverse transport matrix

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 13 /23

HRS VDC Tracking Ill: 3-Parameter Cluster Fit

CathodeP lane / o
Rusadioeor
12000
10000~
Particle 8000
Trajectory / o
o l
4000 l
i SN
ol D et
98 08 04 02 0 0z 04 06 08

- %2 Indf=43.01/38
26m.m 1600 . oy
1aooE e e
. e —
Geodetic ime mismatch e
Pathof —~ |1, Field N
Tonization }/ N Lires
electrons I 00— \
| ersidion
erpendicular k
71 Distance =0 ——)

e v W L n L L Lo
8§37 008 006 004 002 0002 004 006 008 01

Non-linear 3-parameter fit to extract track time offset ty
Computationally expensive: ca. x20 slower than 2-parameter fit

=~ 20 ns FWHM time resolution — background rejection factor ~ 10-20
Required for APEX: expect = 2 accidental tracks per trigger

Code written, still needs testing/debugging and integration

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 14 /23

SBS Track Reconstruction Algorithm

@ Challenge: GEM front trackers operating at up to
500 kHz/cm? count rate

@ Reconstruction algorithm implemented in 2010/11
based on Hall A BigBite MWDC code
@ APV25 decoder & analysis
> Cluster finding
> Peak fitting / noise rejection
@ TreeSearch in coordinate projections — roads

> Very fast recursive template matching algorithm

> Efficiently finds straight lines of hits (within
configurable bin width)

> Also used at HERMES and JLab (Qweak experiment)

@ Correlation of roads from different projections, either

> geometrically (3+ projections); or

> via hit amplitude & timing in shared readout planes
(2 projections)

> Monte Carlo indicates that 2 projections are sufficient

@ 3D fit of correlated hits

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details

OTTTT A TIer TTTTd]

Ext. Review,

\\IOI\\\[i\Id\\\\

H\[o}\\l‘?\.\bl\\\

June 7, 2012 15 / 23

SBS Track Reconstruction Flow

Ole Hansen (Jefferson Lab)

Hall A 12 GeV Software Details

Stri Cluster Hit Hitpattern | Bi
Decoder fs L = p . "] TreeSearch
Finding Building
| Patterns
2D Roads 2D Track Track Projection
De-Cloning Fitting Projections Matching
| Hits in 3D
3D Track 3D Track 3D Final rack
— rinal fr:
Fitting Candidates De-Cloning aracts

Ext. Review, June 7, 2012 16 / 23

SBS TraCking Monte Car|0 (with V. Mamyan, CMU)

Front tracker GEM strip occupancy Track reconstruction accuracy

I
= == ey SBS.gem_xy.y1.coord.resid {SBS.tr.n==1} | x*/ndf 375.1/166
by Constant 107224
H —=— With 3 and D cuts E Mean 1.553¢-06 = 6.393¢-07
- 140 Sigma _3.9780-05 + 6.0920-07
3 =
] s
o 120~
3 E
2 100
= £
7 5
E 80—
60—
5 20 20 80 B 700 a0~
Background [%] £
20
. . . E >
Tracking Efficiency obesm el Mdesladis 0

@ Realistic digitization of GEM &
\ electronics response
@ > 90% tracking efficiency despite > 70%
raw occupancy!

Tracking Efficiency [%]
&

"
H
T T T T T

@ = 40 pum reconstruction accuracy

8 100 120 @ Needs further testing, esp. with real data

Background [%]

N
N
&
3

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 17 / 23

HRS Optics Calibrations

@ Requirements

» Optics runs with sieve slit collimator and multifoil target
» Multi-dimensional minimization procedure for reconstructed residuals

@ General-purpose minimization software package available

optimize++

ROOT application, written in C++

Uses Minuit as underlying minimization engine

Very well tested over almost a decade for a broad variety of
experimental configurations (optics tunes)

v vy VvYy

@ Optics calibration of BigBite and other spectrometers not as well
tested and no general tool readily available, but similar principle

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 18 / 23

VDC Calibration Tools

VDC time offsets VDC time-to-distance conversion
1] 7 D E PVDIS run 26437, VDC HV = -4kV
So.02f
E [
s [
gotsf
e
ﬁ B
J J So.01-
| i "T;.sssf
. £ -
IED S
N I F
et)]
00055002 0.004 0.006 0.008 0.01 0.012'3.014 0.016 0.018 0.02

[wire vs time | eal track distance (m)

@ Automated fit to analytic expression
approximating time-to-distance relation

@ Two linear sections with dependence on
1/tan(track angle)

@ Attempts to obtain flat drift distance
distribution

@ Automated script (edge search) operating

on special calibration runs (white spectrum) @ Can operate on same calibration runs as
time offset calibration

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 19 /23

Online Histogramming

“OnlineGUI" (B. Moffit, 2007) €I CII

m)
AR, TR TTTI

7

Ole Hansen (Jefferson Lab)

Hall A 12 GeV Software Details

e %m [

I EENEEEEEE

Targot Pri

58 EEEEE D
pEEEEEEEE

Run weaste,

pinTo o

@ Compiled ROOT script

@ Visualizes DST (ROOT) output after
prompt replay

@ Easy configuration via text input file

@ Reference histograms (shaded)

Ext. Review, June 7, 2012 20 / 23

https://userweb.jlab.org/~moffit/onlineGUI/guiHOWTO2007.pdf
https://userweb.jlab.org/~moffit/onlineGUI/

Source Code Control & Build System

@ Source code revision control

C++ Analyzer under CVS since 2001

Full file history frequently useful

CVS may also provide text file database history (users’ choice)
May migrate to git for compatibility with Hall C

vV vyVvVYyy

@ Developer tools

» Standard GNU build tools (make, g++ compiler)
» Debugging similarly based on open source tools (gdb, valgrind)

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 21 /23

Documentation & Developer Support

@ Web-based user guide
o THtml-generated reference documentation

e Example replay scripts (from previous experiments)
@ Software development kit (SDK)

» Facilitates rapid development of new apparatus, detector, and/or
physics module classes. Provides skeleton code for each module type.

» User code is placed in a shared library (plugin) that can be loaded
dynamically at run time

» No modifications of the core analyzer code necessary

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 22 /23

http://hallaweb.jlab.org/podd/doc/
http://hallaweb.jlab.org/podd/doc/html_v15/ClassIndex.html

Areas of Concern, Weaknesses

@ SBS software development path & milestones not well defined at this
time

@ HRS calibration procedures not well centralized. Certain common
tasks (e.g. PID) tend to be re-done/re-invented by each experiment.
But: Users seem to like it that way.

@ Smaller issues

» Documentation not as good as it could be, especially for beginners
» API and database format of C++ Analyzer classes sometimes
inconsistent. Could benefit from cleanup.

Ole Hansen (Jefferson Lab) Hall A 12 GeV Software Details Ext. Review, June 7, 2012 23 /23

	Software Framework
	Specific Analysis Algorithms
	VDC Track Reconstruction
	SuperBigBite Track Reconstruction

	Calibrations
	Data Quality Monitoring
	Code Management
	Concerns & Weaknesses

