Timelike Compton Scattering off transversely polarized proton

C12-18-005

PAC 48, August 13th, 2020

Marie Boër (VT), Dustin Keller (UVa), Vardan Tadevosyan (ANSL), et al. Proposal for Hall C, with NPS and CPS collaborations

This proposal

Following E12-18-005 conditionally approved (C2) in 2018

Main TAC concerns in 2018

- high rates in hodoscopes
- proton tracking accuracy

Main updates:

- hodoscopes replaced by GEM+scintillators hodoscopes for proton detection and tracking
- trigger with GEM+scintillators+calorimeter
- improved background and tracking studies

This presentation:

- **1)** New additions to the setup
- 2) Other parts of the experimental setup
- **3)** Physics goals of our experiment
- 4) Analysis and what is expected

Experimental setup

Trigger: GEMs, hodoscopes, calorimeters (all 3 particles)

Integrated luminosity: 5.85 x 10⁵ pb⁻¹ for 30 PAC days of "physics"

Experimental setup

- Radiator: Compact Photon Source
- Target: \perp polarization, $\rm NH_{_3}$
- GEMs (new), scintillator hodoscopes
- Calorimeters: PbWO₄
- Trigger: 3 particles, GEM+hodoscope+calorimeter

- Tolerance rate 10⁶ Hz/mm²
 - Tracking accuracy: $\sim 100 \ \mu m$
 - Tolerance to magnetic field: 1.4 T [as tested with BONUS]
 - 3 parallel layers, split in 4 symmetric quadrants 50x50 cm

As per several Hall A experiments using SBS, PRad, SoLID

Tracker 0

Tracker '

PbWO

Q3

Calo

Hodo

Trackers: scintillator hodoscopes

Modification to our setup since 2018

- 2x2x5 cm³ active elements scintillators with light detectors on the rear
- Along particle trajectory
- dE/dX for low momentum protons, complete tracking

dE/dx for protons, π and K vs momentum

particles bended by target magnetic field

Trigger and DAQ

Main modification to our setup since 2018

 $y P \rightarrow e+ e- P'$ 3 final particle in trigger

4 x 23x23 crystals and scintillators

= 2116 x 2 = 4,232 fADC

4 x (5 layers of GEM chambers 50 cm x 50 cm) = $16 \times 2 \times 500/0.4 = 50,000$ channels of VMM3

VTP : VXS Trigger Processor

Trigger level 1

- Request 2 strongest clusters in the calorimeters, in the opposite quadrants, with energy > 1 GeV each, with combined energy > 5 GeV
- 2. Request energy depositions in 2 hodoscope blocks, correlated in time and location with the calorimeter clusters.

Trigger level 2

- Request 2 coincident clusters in the calorimeters (e+, e-)
- 4. Request hit in scintillator (recoil proton) correlated in time with the calorimeter clusters, and corresponding 2 hits out of 3 in GEM-s.

Radiator: Compact Photon Source

- 10% Cu radiator
- used for beam dump with 3.2 T warm magnet
- W/Cu shielding: minimal radiation, negligible interference with target field
- $1.5x10^{12}$ y/s at 2.5 µA, 5.5 to 11 GeV (5.8x10⁵ pb⁻¹ integrated luminosity)
- ~1 mm spot size at 2m

used for WACS approved experiment, in development

Transverse JLab/UVa polarized target

rotating cell, beam "spiral"

- Target: ${}^{15}NH_{3}$ in ${}^{4}He$ at 1K, 0.6 packing fraction
- DNP at 140 GHz; 20 W RF field
- 5T magnetic field by superconducting Helmhotz coils used for bending particles in spectrometer
- "live" polarization monitoring by NMR
- Acceptance: ±17° horizontal, ±(6°-21.7°) vertical
- Up/down (~10 mm) and 1 Hz rotation of target cup to avoid radiation damage and depolarization effects
- \bullet Dilution factor (from MC) for our reaction ${\sim}20\%$
- Rotation 90° of magnet and scattering chamber for \bot

used for several other 6/12 GeV experiments Target magnetic field for tracking: mapping before/during commissioning

- 2x2x20 PbWO₄ calorimeters: 2116 blocks total divided in 4 groups of 23x23 matrix (active area .74m²)
- Hamamatsu R4125 PMTs (3/4" diameter bialkali photocathode)
- 22.5 radiation lengths deep
- Vertical aperture $\theta = \pm 1.6^{\circ}$: region affected by high rates from transverse magnetic field [BH region]
- Resolutions 2.5/ \sqrt{E} +1%, $\sigma_x \approx$ 3mm at 1 GeV
- In-situ calibration using π° electroproduction

Timelike Compton Scattering

Why measuring TCS off a transversely polarized proton?

- Unique access to GPD E of the proton
- GPD universality studies (TCS vs DVCS)
- Independent observables for GPD data sets and global fits in valence region
- Most knowledge on GPDs from DVCS: complex conjugate, TCS access same information

Transverse target spin asymmetries

Dependence in GPD parametrization and J_{μ} , J_{d} (VGG model) vs ϕ and ϕ_{s}

12

calculations based on Boër, Guidal, Vanderhaeghen GPDs from Vanderhaeghen, Guidal, Guichon (VGG)

Compton Form Factors from DVCS and TCS

Im(Ĥ)

[fit of simulations with same errors]

- CFFs from TCS can be extracted at same level than DVCS
- Im(*E*) extracted thanks to transverse target
- Precision on H greatly improved with new constraints

<u>Main goal</u>: GPD E (proton) \rightarrow unique, not measured in other exp. <u>Secondary goal</u>: complement universality studies

- \rightarrow universality or breaking? Higher twist/NLO effects?
- Studied with Q² evolution in other experiments
- Comparison of fit results DVCS only, TCS, TCS+DVCS
- \rightarrow interpretation depends on size of observed effects

Caveat: for comparison purpose and sensitivity studies; assuming same uncertainties for all cases 13 (based on Boër, Guidal...)

extracted CFFs (generated at value=1)

also 16 bins in ϕ x 16 bins in ϕ_s , integrated over θ

Main cuts:

- triple coincidence: 2 leptons, 1 proton
- Physics: cut out regions near BH peaks by (E, θ , Q'²) ϕ and θ dependent cut
- Trigger thresholds: triple coincidence, minimum 1 GeV/lepton and 5 GeV/2 leptons in calorimeter
- Exclusivity: momentum/energy/missing mass balance

Analysis: exclusivity cuts and/or machine learning for better background rejection ($\pi^+\pi^-$...)

Anticipated results on CFFs

Mostly dominated by complementary unpolarized experiments, due to correlation with GPD H

(illustration) combined errors on 2 orthogonal asymmetries for first sinus moment, for all bins (to be compared with size of asymmetries vs ϕ_s)

CFF from TCS with 4 observables and transverse target CFF uncertainties Re(H) fit of simulations not our final uncertainties (moments 1.8 relative uncertainties ¹⁰ Im(E) Im(Ht) Im(H) 0.8l o(5%) 0.5 reference bin 10%). 🛛 🕁 (14%) σ(14%), 0 σ(20%) in text 0.2F: ♂(20%), □ ♂(28%) o(28%). 🛛 o(38% 0 2 3 5 6 ABCDE ABCDEFG bin number uncertainties on observables

- Im(H), Re(H), Im(H), Im(E) extracted even with very large experimental uncertainties (E, F, G)
- Results mostly depend on unpolarized cross section errors (other experiments off LH2)
- Our experiment will put constraints on GPD E, J_u & J_d, and reduce errors on Im+Re(H) 15

CFFs uncertainties vs experimental errors fits on simulations using VGG parametrization

Beam time request

setup and installation	2.5 (PAC days)
signal and electronic checkout	2.5
gain matching of the detector's channels	0.5
Decomissioning	1.5
Overhead	7.5
commissioning with beam	5
physics	30

Total: 49.5 PAC days, 35 days with beam

Overhead	Number	Time Per (hr)	total (hr)
Polarization/depolarization	60	2.0	120
Target Anneals	15	4.0	60
Target T.E. Calibrations	10	4	28
Packing fraction/Dilution runs	6	2	12
Target Material Change	8	4	32
NPS Crystal Recovery	1	24	24
BCM/BPM Calibration	8	2	16
Moller Measurements	1	1	42
Total Overhead			346 (14.4 days)

Projections:

16 30 physics PAC day, L=5.85x10⁵ pb⁻¹ with 11 GeV e⁻ beam and CPS (1.5x10¹² y/s or 10³⁵ y/cm²/s)

Summary

Physics

- Unique access to GPD E of the proton
- Extraction of CFFs from transverse polarized asymmetries + complementary TCS measurements Reduce correlation uncertainties by ~x10 compared to only unpolarized+beam polarized experiments
- Contribution to GPD data sets, universality studies with complementary TCS / DVCS experiments

Experimental setup

- <u>New</u>: Tracking with **GEM detectors**, to handle high background rates + scintillator hodoscopes
- <u>New</u>: **Trigger with calorimeters +GEMs, triple coincidence**, high thresholds (> 1 GeV /lepton)
- High intensity **real photon beam** from radiator (CPS collaboration)
- 2 splits PbWO₄ electromagnetic **calorimeters** (NPS collaboration)
- Transversely polarized DNP target, ammonia (JLab/UVA target)

Main advantages of this experiment and dedicated setup: GPD E, high intensity real photons

backup

Trigger details

- Each of four quadrants will provide in pipeline (2-3 micro seconds delay) parameters per cluster
 - Location, time, and energy of two strongest clusters in the calorimeter,
 - Energy deposition in the scintillator block correlated in time and location
- VTP (VXS trigger processor) will use the combined energy (> 5 GeV) for the trigger level 1
 - Search for proton signals in the scintillator hodoscope correlated in time to e+/e-
 - Initiate readout of GEM DAQ
- Preliminary proton tracking using GEM information in VMM3 (modern GEM chamber chip, an implementation under development for the SOLID preRD)

Calorimeter cluster trigger

- Compute all 4x4 sums, one sum above threshold
- Request "seed" energy > 1 GeV, 2 quadrant combined energy > 5 GeV
- ✓ Exclude hot blocks (1/8 fraction) close to beam pipe (~23% reduction of useful events)
- ✓ ~3 MHZ integral hit rate in each quadrant (energy above1 GeV), reasonable for trigger formation
- \checkmark 38 kHZ background trigger rate , reasonable for trigger formation
- ✓ At least 90% efficiency for TCS events (estimate with no background)

VMM3 chip

- ASIC for ATLAS New Small Wheel
- Radiation hard similar to APV25 : > 100 Mrad
- 64 channels
- Low noise over wide range of input capacitance (<1 pF to ~1 nF)
- Shaping times : 25 ns, 50 ns, 100 ns, 200 ns
- Pulse amplitude proportional to charge at input
- Gains : 0.5, 1, 3, 4.5, 6, 9, 12, 16 mV/fC
- 6 bit ADC (25 ns conversion) and 10 bit ADC (2<u>50 ns conversion)</u>, 8 bits TDC (1 ns resolution), 12 bits Beam Crossing time stamp
- 4 MHz of rate per channel thanks to multilevel FIFO
- Continuous or triggered readout on normal data path
- Latency up to 16 ms in triggered mode
- Fast direct outputs (64 channels) for ATLAS trigger (6b ADC, ToT)
- Normal data link up to 320 Mb/s

Scheme of DAQ

Inclusion of GEM in trigger will be developed

Extracting spin asymmetry

Here (also in proposal): fit of first moment - for illustration

<u>Method that will be used</u>: direct fits of CFFs on full asymmetries combined with unpolarized and beam polarized cross sections \rightarrow takes all moments into account and reduce CFFs correlations Error on CFFs will be dominated by complementary unpolarized experiments

+ smeared simulations
(with dilution factors+errors)
- ideal fit (on unsmeared data)
- 1 attempt fit (on smeared data)

Systematic uncertainties

SOURCE	VALUE	COMMENTS
target polarization	0.05	NMR measurement
packing fraction	0.03	target spec
target dilution factor	≈ 0.02	depend on analysis cuts / possibility of run off frozen N similar target
interaction with target material	negligible	with vertex reconstruction, exclusivity
background subtraction (π^{\pm} , accidental)	0.03	measurements other Halls and MC
proton resonances	< 0.01	thanks to proton detection
trigger and tracking efficiency	0.01	from MC
beam polarization (for $A_{_{\rm OU}})$	0.01	measured (not main measurements)
luminosity (for σ and $\sigma_{_{\rm OU}}$)	-	(not main measurement, in development)

Total ~ 0.07

Measurements dominated by statistic uncertainties and corrections to dilution factors 23

Impact of dynamic twist corrections on DVCS+TCS fits

- Corrections applied: target mass and restauration of gauge invariance
- Impact on CFFs: ~10% on Re, ~1% on Im, opposite sign in DVCS and TCS
- Impact on DVCS+TCS fits: between "twist 2" and "DVCS" results; 1% (Im) to 10% (Re)
- → below uncertainties on CFFs

Dynamic twist corrections for TCS

- leading-twist TCS hadronic part of amplitude with "Ji's" GPDs decomposition $\begin{aligned} H_{\mu\nu}^{\text{TCS}} &= \\ \frac{1}{2} (-g_{\mu\nu})_{\perp} \int_{-1}^{1} \mathrm{d}x \left(\frac{1}{x - \xi - i\epsilon} + \frac{1}{x + \xi + i\epsilon} \right) \\ \cdot \left(H(x, \xi, t) \bar{u}(p') \not \!\!/ \!\!\!/ u(p) + E(x, \xi, t) \bar{u}(p') i \sigma^{\alpha\beta} n_{\alpha} \frac{\Delta_{\beta}}{2m} u(p) \right) \\ - \frac{i}{2} (\epsilon_{\nu\mu})_{\perp} \int_{-1}^{1} \mathrm{d}x \left(\frac{1}{x - \xi - i\epsilon} - \frac{1}{x + \xi + i\epsilon} \right) \\ \cdot \left(\tilde{H}(x, \xi, t) \bar{u}(p') \not \!/ \eta \gamma_5 u(p) + \tilde{E}(x, \xi, t) \bar{u}(p') \gamma_5 \frac{\Delta \cdot n}{2m} u(p) \right) \\ \Delta &= (p' - p) \end{aligned}$
- ad-hoc twist 3 corrections for gauge-invariance

$$H^{\mu\nu} = H^{\mu\nu}_{LO} - \frac{P^{\mu}}{2P \cdot \bar{q}} \cdot (\Delta_{\perp})_{\kappa} \cdot H^{\kappa\nu}_{LO} + \frac{P^{\nu}}{2P \cdot \bar{q}} \cdot (\Delta_{\perp})_{\lambda} \cdot H^{\mu\lambda}_{LO} - \frac{P^{\mu}P^{\nu}}{4(P \cdot \bar{q})^2} \cdot (\Delta_{\perp})_{\kappa} \cdot (\Delta_{\perp})_{\lambda} \cdot H^{\kappa\lambda}_{LO}$$

• mass and Δ terms in skewness variables, related to light cone momentum fractions

$$\begin{split} \xi' &= -\frac{\bar{q}^2}{2P \cdot \bar{q}} = \frac{-Q'^2 + \Delta^2/2}{2(s - m^2) + \Delta^2 - Q'^2} \\ \xi &= -\frac{\Delta \cdot \bar{q}}{2P \cdot \bar{q}} = \frac{Q'^2}{2(s - m^2) + \Delta^2 - Q'^2} \end{split}$$

R = corrected / asymptotic unpolarized cross sections, vs t (left) and vs Q'2 (right)

Experimental setup (simplified pic)

