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The Standard Model is just a sliver

Dark Energy
69%

Dark Matter
26%

Visible Matter
5%

Standard Model

} Something else

Search for BSM physics

I Phase space large for simple, infinite for complex models

I Two approaches: Cover large area – or look at anomalies
Beryllium/Helium anomaly, gµ − 2, proton charge radius
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8Be is special

Many images from arXiv:1707.09749
8Be is special: two narrow, highly energetic states which can decay
to ground state via E/M
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Decay modes of 8Be(18.15)

Hadronic, electromagnetic and through internal pair conversion
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The Atomki experiment

ATOMKI PAIR
SPECTROMETER

θ 

1.04 MeV proton beam on 7Li to 8Be(18.15) + γ. Followed by
decay. Looked at e± pairs from internal conversion.
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The Beryllium anomaly

(from: arXiv:1707.09749v1, modified from PRL 116 042501 (2016))

I Feng et al. (PRL 117, 071803 (2016)): Proto-phobic force to
evade current limits

13



New results on 3H(p, γ)4He arXiv:1910.10459 [nucl-ex]

I Updated experimental setup: reduced background

I Bump appears at different angle, but same mass:
4He : 17.01± 0.16 MeV 8Be : 16.84± 0.16 MeV
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Why believe it?

I This model has χ2/d .o.f . of 1.07, significance of 6.8σ

I Bump, not last bin effect

I Remeasured with new detector: A J Krasznahorkay et al 2018
J. Phys.: Conf. Ser.1056 012028

I Compatible masses in 8Be and 4He, and compatible couplings
(Feng et al. arXiv:2006.01151)

I Non-linearities in Isotope shifts (King-plots), observed (I.
Counts et al., arXiv:2004.11383)

I Hard to distinguish from higher order SM effects.
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Why not believe it?

I DM boson interpretation is proto-phobic to evade NA48/2
limits

I Actually:
εp
εn

coupling below ±8%. Z 0 is ∼ 7%

I Recently, alternative processes were proposed

I arXiv:2003.05722v3 Hard γ + γ process
I arXiv:2005.10643 Anomalous Internal Pair creation
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How can we measure it at JLab?
I This particle can be produced via Bremsstrahlung,

predominantly ISR off the electron.

I Measure

e−Ta→ e−TaX followed by X → (e−e+)

I Irreducible background:

e−Ta→ e−Ta γ? → e−Ta e+e−

I two spectrometers,
measure e+ and e− in coincidence

I Best kinematics:

I highest production rate if X takes all electron energy.
Rise in CS beats all.

I with limited and same out-of-plane acceptance,
symmetric angle optimal.
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Background

I Main background is NOT the irreducible one. Random
coincidences between

I radiative elastic electrons
I positrons from (virtual) photon pair-production where e−

is missed

I Can optimize by moving electron arm backward.
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Proposed setup

I 45 MeV beam, 150 µA on 10 µm tantalum foil −→about 0.3
inv. fb/s hydrogen equivalent

I Two spectrometers

I ±2◦ in-plane, ±5◦ out-of-plane
I Positron spectrometer at 16◦, 28 MeV
I Electron spectrometer at 33.5◦, 15 MeV
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Spectrometer design parameters

Kinematic var. Acc. Inv. mass res. est. res. on focal plane Error

in-plane angle ±2◦ 22 keV
mrad

5mm/7cm→1.4 mrad 32 keV

out-of-plane angle ±5◦ 5 keV
mrad

1.5◦ 133 keV

momentum ±20% 85 keV
%

5mm/30cm→< 0.2% 17 keV

I Spectrometer can measure two quantities on first plane
(position), but has additional multiple scattering for third
quantity (angle)

I Simple dipole spectrometer, dispersive direction out-of-plane
→ out-of-plane angle is measured worst.

I Sum for two spectrometers: 194 keV , assumed 250 keV

I Have to do full simulation when realistic magnetic field is
calculated.
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Counting rates: X signal
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Background rates

QED irreducible: 55 Hz coincidences,

... but 120 kHz e+ singles
Initial state radiation e−p: 6 MHz
−→ Random coincidence rate 500 Hz

(at 1.5 GHz bunch rate)
This is the minimum trigger rate and sets the sensitivity.
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Counting rates: Backgrounds
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Dominated by accidental background

I Random coincidences dominate

I Scaling with instantaneous luminosity:

I Signal S ∼ L
I QED background Q ∼ L
I Accidental background A ∼ L2

I Sensitivity S√
Q+A

∝ 1 for A� Q

I Sensitivity almost independent of luminosity. Scale is set by
bunch-clock / time resolution

I Out-of-time ”coincidences” give accurate measure of
acceptance including efficiency.
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Search
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Reach
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Spectrometers
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Experience: Møller at MIT HVRL
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Møller experiment ran successfully
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Example result
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Epstein et al, Phys. Rev. D 102, 012006 (2020)
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Tracking detectors

I Stack of three tGEMs, 25x40 cm, modified CERN design

I Readout via APVs and MPD4 (Same as SBS and PREX)

I Hampton group has built eight.
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Trigger detectors

I Scintillator Hodoscope, 10 segments/spectrometer

I Needs timing resolution of < 500 ps

I MUSE beam hodoscope: 2 mm thick scintillator, SiPM
readout: < 100 ps

I Tested up to 8mm wide, 15 cm long.
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Space requirements

To CEBAF

45 MeV, 150 µA

e− spec at 33.5◦

e+ spec at 16◦
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3D rendering

BEAM DIRECTION

TARGET CHAMBER

LEAD SHIELDING
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TURBO PUMP
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Modifications to beamline

I Straight beam line segment replaced with target chamber +
spool piece.

I Beam dump likely good enough, evaluating long term
exposure.

I Normal operation and use of beamline for diagnostics possible
with target in ”out” position.
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Could we run at LERF?

In principle yes, at the moment no

I Proposal was aimed at LERF, but we got guidance to look at
injector, to facilitate a timely completion.

I Space should work out. Beam dump may be available.

I As of today, LERF can only achieve 32 MeV (leak). Below 40
MeV not sensible to do experiment.

43



Conclusion
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Backup slides

−→backup slides←−
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Reach in comparison
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I Mu3e: Commissioning in 2021
I MESA: Did not include random coincidences, post 2022
I VEPP-3: Schedule not known
I LHCb: Run 3, rejection for proto-phobic force not clear
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LERF running

August 2016 running established:

I Operating windowless hydrogen gas target

I Møller dump concept validated

I Effect of solenoid on LERF beam observed, explained and
compensation scheme developed

I No showstoppers encountered

Papers have been written on

I The windowless hydrogen gas target Nucl. Instrum. Methods
Phys. Res. A, 939 (2019), pp. 46-54

47



Scintillator trigger

Several issues were raised:

I Thickness: Both considerations of timing resolution and
background insensitivity push for a thinner scintillator. We
have specified a thickness of 2 mm in the proposal.

I Timing resolution: A timing resolution of below 500 ps is
adequate for the experiment. The design used at MUSE
achieve sub 100 ps time resolution with SiPM readout.
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Target cooling

I The beam deposits about 4 W in the target foil.

I Experience at Mainz with running small electrical motors in
vacuum:
Spinning the foil technically straightforward, eliminates the
risk of accidental melting.
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Spectrometer design

I Conceptual design finished.

I Based on expertise building the radiative Møller experiment at
MIT.

I Full magnetic field calculation is in progress.

I Once the experiment is approved, high priority to completely
specify the spectrometer design.
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Detector resolutions

I Geant4 simulations are in progress.

I In-plane angle and momentum is measured using the first
layer of the GEM, minimizing the effect of multiple scattering.

I Out-of-plane angle measurement will be affected, being
studied.

I To estimate the reach, we assumed resolutions easily achieved
even with naive spectrometer designs and coarse detectors.
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Backgrounds in detectors I

I Detailed Geant4 simulations must include the detailed
mechanical design, background rates from e+/-, photons,
neutrons etc.

I Experience of successfully simulating and measuring these
backgrounds from the July 2012 test at the LERF.

I For example, the giant dipole resonance is the main
process for generating neutron backgrounds.

I Extensive Geant4 simulations of the DarkLight-1a
configuration that involved detailed tracking of low
energy particles. This was essential to the design of the
Møller dump that was successfully validated in August
2016 running.
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Backgrounds in detectors II

I Shielding to reject line-of-sight background trajectories from
the target region to the detectors

I Collimator system to minimize particle trajectories hitting the
magnets

I Minimized material thickness on the outside of the magnet
bend so elastic scattered electrons can escape and are not
rescattered.

I Photon background only affects the trigger rate, but not the
background rate, because they will not produce tracks in the
tracking detectors.
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Beam dump

I The issue of a post-running radiation hazard due to activation
of the beam dump during an extended running period will be
looked into, in consultation with the JLab radiation control
group.

I Initial findings indicate that it’s likely that beam dump is
useable.

I In case it’s not, building of replacement beam dump is
straight forward. See next slide.
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6kW (40 MeV x 150 µA) beam dump
(Cite & Yilmaz, AIP Conf. Proc. 1722, 030001)

I Graphite core

I low-cost
I lower x-ray and neutron yield
I EC = 110 MeV for carbon

I Lead shielding

I Cone shaped entrance to redirect
secondary electrons

I Fluka simulation yields:

I few keV γs at edge of carbon, easily shielded by the lead
I absorbed dose at the edge of carbon is low

I G. Fallon at MIT: estimate based on iron core, found a radiation level <
1mr/hr when shielded with 20 cm of lead. Dominant activation product:
Mn-54.

Conclusion: Beam dump for DL-1c is technically straightforward.

55



timeline (end of 2015)

Phase 1: R&D, funded

I Will run at Jefferson Lab’s LERF (fka. FEL)

I 1a: First internal target/solenoid in an ERL (2016)
I 1b: First measurement of radiative Møllers at 100 MeV

(2016)
I 1c: Prototype with reduced acceptance (2017)

Phase 2: Full experiment

I Simulation / design work for full experiment still in progress.
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I Search for A′, via e + p → e ′ + p′ + X
X → e+e− (visible) or X → (f +f −)||... (invisible)

I Record all outgoing visible momenta → thin target
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timeline (mid 2018)

Phase 1: R&D, funded

I Is run at Jefferson Lab’s injector, LERF and MIT’s HVRL

I 1a: First internal target/solenoid in an ERL (2016)
I 1b: First measurement of radiative Møllers at 2.5 MeV

(2018)
I 1c: Test of 17 MeV fifth force (2019)

Phase 2: Full experiment

I Simulation / design work for full experiment still in progress.
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