Precision Deuteron Charge Radius Measurement with Elastic Electron-Deuteron Scattering

on

Dipangkar Dutta

Mississippi State University

for the PRad Collaboration

Spokespersons (A. Gasparian^{*}, H. Gao, D. Dutta, N. Liyanage, D. Higinbotham & E. Pasyuk)

PAC 48 Meeting, Aug 10, 2020

Outline

- Executive summary
- Introduction & Motivation
- Proposed Experiment
 - Experimental method (The PRad method)
 - The equipment (PRad-II + recoil detector)
 - Systematic uncertainties
 - Beam request & projected results
- Conclusion

D. Dutta

2 /25

Executive Summary

Using the **PRad method**, which has convincingly demonstrated the validity and advantage of the new calorimetric technique, we will measure the deuteron charge radius with a precision of 0.22%

We will cover the Q^2 range of $2x10^{-4}$ to 5×10^{-2} GeV² probing the lowest Q^2 reached by e-D scattering experiments.

We will use the **PRad-II setup** along with a new recoil detector.

The "deuteron radius puzzle" unfolded soon after the "proton radius puzzle" but with less fanfare.

A ~6 σ discrepancy between r_D from ordinary D and µD spectroscopy was observed a few years after the "proton radius puzzle" came to the fore.

To date *e-D* scattering has not played any significant role in addressing the "deuteron radius puzzle"

The slope of the $G_C(Q^2)$ form factor at $Q^2 = 0$ is used to extract r_D from elastic e-D scattering.

In the limit of first Born approximation, elastic eD- scattering is written in terms of the A(Q²) and B(Q²) structure functions.

$$rac{d\sigma}{d\Omega} = rac{d\sigma}{d\Omega}|_{NS}[A(Q^2) + B(Q^2) an^2 heta/2],$$

 $\frac{d\sigma}{d\Omega}|_{NS}$ is for elastic scattering from point-like spinless particle, & A(Q²) and B(Q²) are related to deuteron charge (G_{Cd}), electric quadrupole (G_{Qd}) and magnetic dipole (G_{Md}) form factors: $= G_{Cd}^2(Q^2) + \frac{2}{2}nG_{Cd}^2(Q^2) + \frac{8}{2}n^2G_{Cd}^2(Q^2)$

$$\begin{split} A(Q^2) &= G^2_{Cd}(Q^2) + \frac{1}{3}\eta G^2_{Md}(Q^2) + \frac{1}{9}\eta^2 G^2_{Qd}(Q^2) \\ B(Q^2) &= \frac{4}{3}\eta(1+\eta)G^2_{Md}(Q^2), \\ \eta &= Q^2/4m_{d^2}^2 \end{split}$$

At low Q² contribution from G_{Qd} and G_{Md} are small, and the deuteron rms charge radius is defined as:

$$r_d^2 = -6 \frac{dG_C}{dQ^2} \Big|_{Q^2 \to 0} = -3 \frac{dA}{dQ^2} \Big|_{Q^2 \to 0} + \frac{G_M^2(0)}{2M_d^2}, \text{ with } G_M(0) = \frac{M_d}{M} \mu_d, \quad \frac{G_M^2(0)}{2M_d^2} \approx 0.0163 \text{ fm}^2.$$

DRad: a novel electron scattering experiment

Will use the PRad-II setup with 1.1 GeV and 2.2 GeV electron beam

- High resolution, all PbWO₄ calorimeter (magnetic spectrometer free)
- Windowless, high density gas flow target (reduced backgrounds)
- Simultaneous detection of elastic and Møller electrons (control of systematics)
- Vacuum chamber with one thin window, & two GEM chambers (better resolution)
- Q² range of 2x10⁻⁴ 5x10⁻² GeV² (lower than all previous electron scattering expts.)
- Add a cylindrical recoil detector for ensuring elasticity of reaction.
- Essentially model independent extraction of r_D

D. Dutta

The DRad experiment will use a magnetic spectrometer free method to measure r_D

Allows coverage of extreme forward angle $(0.7^{\circ} - 7.5^{\circ})$ in a single setting and complete azimuthal angle coverage. Q² range of $2x10^{-4} - 5x10^{-2}$ GeV² (lower than all previous e-D scattering experiments)

Upgraded HyCal: replace lead-glass modules with PbWO₄ modules to have uniform high resolution.

> PbWO₄ resolution: $\sigma_E/E = 2.6\%/\sqrt{E}$; $\sigma_{xy} = 2.5 \text{ mm}/\sqrt{E}$

Convert to FADC based readout of HyCal

- PbWO₄ calorimeter (118x118 cm²)
- 57x57 matrix of 2.05 x 2.05 cm² x18 cm PbWO₄
- 5.5 m from the target,
- 0.5 sr acceptance

The DRad experiment will use the PRad windowless target with a redesigned target cell.

A cryo-cooled windowless gas flow target.

Systematic uncertainties will be controlled by simultaneously detecting e-D elastic and Møller events

eD cross section measured relative to Møller:

Two major sources of systematic errors, N_e and N_{tgt} , cancel. But, need relative det. efficiency ϵ_{det}

HyCal + GEM

- Geom. acceptances and detection efficiencies will be extracted during $ep \rightarrow ep$ calibration run with hydrogen gas in target cell.
- Deuteron detection efficiencies will be obtained from the ratio of deuteron/proton detection efficiencies measured at TUNL using the 5-15 MeV p/D beams from the Tandem accelerator.

Møller events will be detected in two-electron and/or single electron modes within the HyCal acceptance.

D. Dutta

The elasticity of e-D scattering will be ensured with a cylindrical Si-strip-based recoil deuteron detector.

Thin passivation layer Si-strip detectors are routinely available.

Micron Semiconductor Ltd

HOME MARKE

MARKETS MANUFACTURE SILICON DIAMOND CUSTOM EXHIBITIONS NEWS CONTACT

Ohmic / Junction Window Type

SILICON SENSOR OPTIONS

* R&D

Window Type

The range of dead layer windows available with the in-house Varian 300 XP ion implanter are listed below. Window types refer to the junction of a device, but can also be achieved on the ohmic side upon request.

	WINDOW TYPE	DEAD LAYER	MINIMUM ENER	GY THRESHOLI	D		
ļ			Electron	Proton			
	2	500 nm	4 KeV	90 KeV			
	7	300 nm	2 KeV	70 KeV			
(9	100 nm	1K eV	20 KeV			
					W	AFER	STANDARD SILICON THICKNESSES AVAILARI E
	9.5	50 nm	500 eV	10 Kev	3	-inch	20, 30, 40 μm
	10*	10 nm	100 eV	1 Kev	4	-inch	40, 50, 65, 80, 100, 140, 250, 300, 500, 1000, 1500 µm
	PSD	NTD			6	-inch	150, 200, 300, 400, 500, 675 μm

Neutron transmutation doped n-type silicon is offered for applications where low resistivity variation across the wafer is required. This material has a much higher depletion voltage that regular high resistivity n-type material.

The elasticity of e-D scattering will be ensured with a cylindrical Si-strip based recoil deuteron detector.

256 strips with linearly varying angles of 0 - 3 deg to minimizes dead zones. The strips will have a constant pitch of ~200 micron (~1/85 deg⁻¹). The angular resolution of $\delta \varphi \leq 5$ mrad and $\delta \theta \leq 10-20$ mrad.

The recoil detector will be calibrated using *ep* elastic running on hydrogen and with the 5-15 MeV p/D beam from the Tandem accelerator at TUNL.

Preparations are underway for a test using a single SVT module from Hall-B. (delayed by COVID)

Particle identification at 1.1 GeV will use recoil detection and its time difference with the HyCal.

PAC48 Meeting, Aug 10, 2020

Particle identification at 2.2 GeV will use recoil detection and its time difference with the HyCal.

D. Dutta

The recoil detector can detect deuterons with kinetic energy > 40 keV

Comprehensive Geant4 simulation of the experiment was developed and used for studying the detection thresholds and backgrounds.

Deuteron will recoil at large polar angles $\theta_d = [83^\circ - 89^\circ];$

Passivation (dead) layer on the Si-strip detector assumed ~0.1 μm, as low as 0.01 μm is available from Micron semiconductors.

At both 1.1 and 2.2 GeV beam energy $\theta_e = 0.7^\circ - 7.5^\circ$ can be detected giving a Q² coverage of $2x10^{-4} - 5x10^{-2}$ GeV² with high resolution.

PAC48 Meeting, Aug 10, 2020

D. Dutta

Deuteron electro-disintegration and inelastic scattering are the two major sources of background.

Both major backgrounds included in the comprehensive simulation. Other minor background such as coherent pion production also studied.

Electro-disintegration rates are < 6% of the elastic rates. inelastic rates are < 1% of the elastic rates

Elastic *e-D* and Møller events can be cleanly separated over the full angular range [0.7^o - 7.5^o]

Comprehensive Geant4 simulation of the experiment was developed and used for studying the detection thresholds and backgrounds.

The internal and external radiation has been included for both *e-D* and Møller scattering.

The simulated energy vs. scattering angle distribution of *e-D* elastic and Møller scattered electrons

A wide range of functional forms were systematically tested for their robustness in extracting r_D.

- Various functional forms were tested with modern parameterizations of the deuteron form factors, using DRad kinematic range and uncertainties.
- Fixed Rational (1,3) was identified as a robust fitter with lowest uncertainties

The robustness = root mean square error (RMSE)

 δR = difference between the input and extracted radius σ = statistical variation of the fit to the mock data

$$\mathbf{RMSE} = \sqrt{(\delta R)^2 + \sigma^2},$$

A total of 40 PAC days of beam time is requested for the high precision extraction of r_D .

Target thickness: $N_{tgt} = 2x10^{18} \text{ D} \text{ atoms/cm}^2$ Beam intensity: $I_e \sim 30 \text{ nA} (N_e = 1.875x10^{11} \text{ e}^{-1}/\text{s})$

1) for $E_0= 1.1 \text{ GeV}$, Total rate for $ed \rightarrow ed$

 $N_{ed} = N_e \, x \; N_{tgt} \, x \; \Delta \sigma \; x \; \epsilon_{geom} \; x \; \epsilon_{det}$

≈ 519 events/s ≈ 44.7 M events/day Rates are high, however, for 0.5% stat. error for the last Q²= 1.3×10^{-2} (GeV/c)² bin 8 days are needed.

2) for $E_0 = 2.2 \text{ GeV}$, $I_e \sim 70 \text{ nA}$ Total rate for $ed \rightarrow ed$

 $N_{ed} \approx 43$ events/s ≈ 3.7 M events/day

to have ~ 0.5 % stat. error for the last Q^2 bins we request 16 days for this energy run.

The choice of beam current is based on the expected maximum data rate allowed by the new GEM detector DAQ (25 kHz), the expected trigger rate for the calorimeter and maximum power allowed on the Hall-B Faraday cup (160 W).

	Time (days)
Setup checkout, calibration	3.5
Recoil detector commissioning	2
Recoil detector calibration with hydrogen gas	3
Statistics at 1.1 GeV	8
Energy change	0.5
Statistics at 2.2 GeV	16
Empty target runs	7
Total	40

The estimated total uncertainties on the extracted r_D is 0.22%, about factor of 2 better than the best extraction to date

Item	Uncertainty (%)	Item	Uncertainty (%)
Event selection	0.110	Statistical uncertainty	0.05
Padiative correction	0.000	Total correlated terms	0.13
HyCal response	0.030	GEM efficiency	0.03
HyCal response	0.045	Inelastic e-d process	0.024
Geometric acceptance	0.022	Bias from the fitter	0.065
Beam energy	0.008	Efficiency of recoil detector	0.15
Total correlated terms	0.13	Total	0.22

Projected results

We have addressed the issues raised by PAC-45 during our previous submission of this proposal.

PR12-17-009

Scientific Rating: N/A

Recommendation: Deferred

Title: Precision Deuteron Charge Radius Measurement with Elastic Electron-Deuteron Scattering

Spokesperson: A. Gasparian (contact person), H. Gao, D. Dutta, N. Liyanage, E. Pasyuk

Summary: While the present target accuracy of this proposal is large as compared to the effect, the PAC finds the proposal potentially interesting and encourages the authors to scrutinize the final error in $\delta r_d/r_d$ once the PRad analysis is finished. A possibility to substantially reduce the experimental error on $\delta r_d/r_d$ seems to be very attractive but needs to be worked out in detail. A method to calibrate the efficiency of the silicon strip detector for low energy deuterons with energies as expected in this proposal for the low q² intervals needs to be thoroughly worked out. The systematic error while extrapolating from measurements with protons from elastic scattering or from higher energy deuterons needs to be quantitatively understood.

D. Dutta

The recoil detector will be calibrated using *ep* elastic running on hydrogen and with the 5-15 MeV p/D beam from the Tandem accelerator at TUNL.

Preparations are underway for a test using a single SVT module from Hall-B. (delayed by COVID)

Response to selected TAC questions

12. The proposed recoil detector is based on Si strips technology. At our knowledge, there is no established practice of using such a detector at 20K (CERN demonstrated operations at 70K only). Such a low T can be problematic not only for sensors but for services, cables, and everything

response: The electronics and cables are located outside the target cell and are not exposed to the 20K gas, and thus they will not be operating at 20K. Furthermore, if needed they will be wrapped in super-insulation or heating tapes. The Si-sensors themselves will indeed be inside the target cell, and thus at 20K. Although Si-strip detectors have not been studied at 20K other solid state detectors such as SiPMs have been studied at temperatures as low as 4K. They were found to perform well and have lower noise and faster response times at these low temperatures.

> Proc. 5th Int. Workshop New Photon-Detectors (PD18) JPS Conf. Proc. 27, 012005 (2019) https://doi.org/10.7566/JPSCP.27.012005 Characterization of Cryogenic SiPM Down to 6.5 K

Ryoto Iwai¹, Mikio Sakurai¹, Aldo Antognini^{1,2}, Ivana Belosevic¹, Malte Hildebrandt², Klaus Kirch^{1,2}, Andreas Knecht², Angela Papa^{2,3} and Alexey Stoykov²

Response to selected TAC questions

13. The recoil deuterons and protons, for calibration, at 1.1 GeV elastic scattering will have <0.5 MeV and <1 MeV kinetic energy at 2 degrees. It is not clear if detector will be sensitive to this low energy recoils. The Si coating can affect the minimum p and d kinetic energy sensitivity. The demanding spec (1-2 μ m) should be demonstrated to be feasible by the vendor and tested by proponents.

response: Micron Semiconductor provides standard Si-strip detectors with passivation layers ranging in thickness from 0.5 μ m to 0.01 μ m and they quote a proton detection threshold of 1 keV for the detectors with a 0.01 μ m thick passivation layer. They also provide a special material (Neutron Transmutation Doped) that can achieve very high uniformity (< 5% variation) for a passivation layer with a thickness of 0.03 μ m. Our simulations also indicate that the low energy recoil deuterons in the 0.7-7.5 degree angular range can be detected in the proposed Si-strip detector.

SILICON SENSOR OPTIONS Window Type

The range of dead layer windows available with the in-house Varian 300 XP ion implanter are listed below. Window types refer to the junction of a device, but can also be achieved on the ohmic side upon request.

WINDOW TYPE	DEADIAVED	MINIMUM ENERGY THRESHOLD		
WINDOW I IFE	DEAD LAYER	Electron	Proton	
0	100	117 . 17	20 K - V	
9	100 nm	IKev	20 KeV	

Summary

- We propose a new high precision measurement of the deuteron charge radius from e-D scattering to address the "deuteron radius puzzle".
- The proposed experiment is based on the magnetic-spectrometer-free calorimetric technique successfully demonstrated by the PRad experiment.
 - ✓ It will use the same setup proposed for the PRad-II experiment + a recoil detector.
 - ✓ Cylindrical Si-strip-based recoil detector.

• This will allow us:

- ✓ to reach the lowest Q² (~2x10⁻⁴ GeV²) in e-D scattering experiment.
- ✓ cover a large Q² range (2x10⁻⁴ 5x10⁻² GeV²) in a single stationary experimental setup.
- ✓ measure the deuteron charge radius with a precision of 0.22%

Requesting a total of 40 PAC days of beam time at 1.1 and 2.2 GeV beam energy.

This work was supported by NSF-MRI grant PHY-1229153 and US DOE grant DE-FG02-07ER41528