Update on ALERT A Low Energy Recoil Tracker

Whitney Armstrong

Argonne National Laboratory

ALERT Collaboration

July 23, 2020

Introduction

- Overview of ALERT Physics
- ALERT detector
- Subsystem progress
- Mechanical design progress
- Status and planned tests
- Summary

The ALERT Experiments

A comprehensive program to study nuclear effects

Coherent Processes on ${}^{4}\mathrm{He}$

- 4 He($e, e' {}^{4}$ He γ)
- 4 He($e, e' {}^{4}$ He ϕ)

Explores the partonic structure of ${}^{4}\mathrm{He}$

DIS on ${}^{4}\text{He}$ and ${}^{2}\text{H}$: Tagged EMC Effect

- ⁴He(*e*, *e*'+³H)X (proton DIS)
- 4 He(e, e'+ 3 He)X (neutron DIS)
- ${}^{2}H(e, e' + p)X$ (neutron DIS)

Test FSI and rescaling models

Incoherent processes on ${}^{4}\text{He}$ and ${}^{2}\text{H}$

- 4 He($e, e'\gamma p + {}^{3}$ H)
- 4 He $(e, e'\gamma + {}^{3}$ He)n
- ${}^{2}\mathsf{H}(e,e'\gamma+p)n$

Identify medium modified nucleons

Anenergy more channels for free W.R. Armstrong

July 23, 2020 2 / 17

• Two goggles to view the nucleus

3 / 17

- Two goggles to view the nucleus
- Coherent DVCS to probe the charge profile

3 / 17

- Two goggles to view the nucleus
- Coherent DVCS to probe the charge profile

3 / 17

• Coherent ϕ production to probe the gluon profile

- Two goggles to view the nucleus
- Coherent DVCS to probe the charge profile
- Coherent ϕ production to probe the gluon profile
- How does the gluonic form factor compare to the charge?

3 / 17

${}^{4}\mbox{He}$ Transverse Quark and Gluon Densities

Coherent scattering on ⁴He

W.R. Armstrong

July 23, 2020 4 / 17

Proposed Setup: CLAS12 + ALERT

- Use CLAS12 to detect scattered electron, $e^\prime,$ and forward scattered hadrons.
- A low energy recoil tracker (ALERT) will detect the spectator recoil or coherently scattered nucleus

ALERT requirements

- $\bullet\,$ Identify light ions: H, $^2\text{H},\,^3\text{H},\,^3\text{He},$ and ^4He
- Detect the **lowest momentum** possible (close to beamline)
- Handle high rates
- Survive high radiation environment
 → high luminosity

Why ALERT?

A new detector is needed

• Existing and proposed detectors (RTPCs) do not meet experimental needs

- Run group will operate at CLAS12 luminosity limit and Hall-B beam current limit
- ALERT will **provide full PID** of light ions, protons to ⁴He

W.R. Armstrong

July 23, 2020 6 / 17

ALERT Design

Basic Design

- Detector will surround a \sim 3 atm gas target cell which is 6 mm in radius and constructed with 25 μ m kapton walls
- Hyperbolic drift chamber with 10° stereo angle.
- Outer scintillator hodoscope for PID

Hyperbolic Drift Chamber (HDC) Design

- 2 mm wire separation
- 10° stereo angle
- Minimize material (windows/walls)
- Detects $\theta\sim 30^\circ$ to 170°
- Acceptance minimum momenta: protons $\rightarrow 70~{\rm MeV/c}$ $^4{\rm He} \rightarrow 240~{\rm MeV/c}$

July 23, 2020 7 / 17

ALERT Hyperbolic Drift Chamber (HDC)

HDC Status

- Simulations of stresses on endplates complete.
- MACOR selected for forward endplate (fabrication in progress).
- Designing wire assembly tools and jig.

Courtesy of Julien Bettane

W.R. Armstrong

July 23, 2020 8 / 17

ALERT Time-of-flight (ATOF)

TOF separates light ions, except ⁴He and ${}^{2}H$ which have same m/g ratio

W.R. Armstrong

July 23, 2020 9 / 17

ENERGY

ATOF Module

Note this is a slightly older design.

Module design status

- Conceptual design of rigid-flex PCBs and assembly complete.
- Design freeze of HDC's PCB radius needed to finalize ATOF module design .

W.R. Armstrong

July 23, 2020 10 / 17

ATOF System Layout

- Readout electronics will mount on the upstream plate of ALERT
- All active components will be outside of the drift gas volume
- Developing modular readout electronics with engineering support from Nalu Scientific and JLab Fast electronics group

 \rightarrow JLab – Petiroc2A readout board (standard)

 \rightarrow Nalu – ASOC readout board (waveform digitizing)

Argonne 🛆

W.R. Armstrong

July 23, 2020 11 / 17

Mechanical design

11021

W.R. Armstrong

July 23, 2020

Mechanical design

W.R. Armstrong

July 23, 2020 13 / 17

ALERT Status and Plans

- Prototype tests underway.
- Future tests include:
 - \rightarrow High field facility tests
 - \rightarrow In-beam prototype tests at ALTO
- Working closely with Hall B Task Force to prepare for experiment
- Followup to Nov. 2019 ERR expected late 2020/early 2021
- Some delays due to COVID19
- Detailed project schedule and plans. (not yet considered for beam time scheduling)
- Significant progress on hardware and software fronts

W.R. Armstrong

July 23, 2020 14 / 17

Argonne High Field Test Facility

Maximum Field	4 T
Bore diameter	
with gradient coils	68 cm
w/o gradient coils	90 cm
Homogeneity	10^{-5}
Removable rails	

In field tests:

- ATOF readout electronics test component magnetics.
- **2** HDC prototype wire forces
- **3** Full ALERT detector

R. Armstrong

July 23, 2020 15 / 17

ALERT at ALTO Beam Test HDC Prototype:

W.R. Armstrong

ALTO:

• HDC prototype test planned with ALTO ion beams.

July 23, 2020 16 / 17

Summary

- Physics of ALERT is a comprehensive program to study nuclear effects
- ALERT design and construction is steadily progressing.

July 23, 2020 17 / 17

July 23,

Thank you!

July 23, 2020 17 / 17

