$J/\psi \rightarrow \mu^+\mu^-$ detection with CLAS12 **RICHARD TYSON**

University of Glasgow

Experiment Overview

$ep \rightarrow (e')\mu^+\mu^-p$

► The electron beam produced by CEBAF scatters with a liquid hydrogen (proton) target through the exchange of a quasi-real photon $Q^2 \sim 0$

The proton and $\mu^+\mu^-$ pair produced in J/ ψ decay are detected in the FD.

Experiment 12-12-001 was approved for 120 days of beamtime with CLAS12 at a luminosity of 10³⁵cm⁻²s⁻¹

J/ψ quasi-real photoproduction

Feynmann diagram of P_C^+ pentaquark photoproduction.

P_c^+ resonances at the LHCb (2019)

The J/ ψ p invariant mass distribution [1].

P_c^+ Models

Hadronic molecules: Weekly coupled charmed baryon and charmed meson.

Hadro-charmonium states: compact bound cc state and light quarks.

Quarks in a bag: Two tightly correlated diquarks and an antiquark.

Goals

- Confirm the LHCb results and distinguish between several models for the structure of the P_c⁺ Pentaquarks.
- Study the production mechanism of J/ψ near threshold by measuring the total cross section as a function of beam energy.
- Study the distribution of color charge in the nucleon by measuring the t-dependency of the differential cross section of J/ψ photoproduction.

The J/ ψ total cross section as a function of beam energy, scaled to GlueX data [2].

Initial particle selection

- Take a proton in FD, use event builder PID.
- Take two additional oppositely charged tracks in FD.
- Require for these mip-like energy deposition in the calorimeters (upper bounds from skim1 requirements):
 0.01<PCAL<0.045
 0.01<ECin<0.055
 0.01<ECout<0.85

Energy Deposited in PCal vs Energy Deposited in ECin (negative charge)

Event Selection Criteria

Restrict the missing mass squared of the event and virtuality of the photon.

Studied how the range of these cuts affected our µ⁺µ⁻ invariant mass.

Boosted Decision Trees (BDTs)

- Multivariate classifier available with ROOT TMVA.
- A boosted decision tree picks trees at random in a forest to refine the weights.
- Requires a training sample to learn how to differentiate the "signal" and "background" distributions.

Variables and training

- Also included the missing mass squared of the event, Q^2 and the opening angle between the two muons in our discriminating variables.
- Simulated events with J/ψ decaying to two muons are used as signal for training.
- Events with the scattered electron in the FT and a proton and two mip candidates in FD are used as background for training.

Choosing the best response

 $Efficiency = \frac{signal}{signal + missed} = \frac{TP}{TP + FN}$

 Signal efficiency gives an indication of how effective my signal selection is.

$$Purity = \frac{signal}{signal + background} = \frac{TP}{TP + FP}$$

 Signal purity gives an indication of how clean my sample is.

Cut efficiencies and optimal cut value

$\mu^+\mu^-$ Invariant Mass

The $\mu^+\mu^-$ invariant mass obtained with <10% of the total expected inbending data.

mu+ mu- Invariant Mass (selected by BDT)

Future Work

Additional work on muon/pion discrimination.

Acceptance and normalization studies.

► Kinematic fitting.

From there we'll look at selecting events with P_c^+ decaying to a proton and J/ ψ and measuring the J/ ψ cross section.

Collaborators

- Dr. Stepan Stepanyan (Jefferson Lab)
- Dr. Rafayel Paremuzyan (University Of New Hampshire)
- Dr. Nathan Baltzell (Jefferson Lab)
- Dr. Valery Kubarovsky (Jefferson Lab)
- Dr. Pawel Nadel-Turonski (Old Dominion University)
- Dr. Silvia Niccolai (Institut de Physique Nucléaire d'Orsay)
- Dr. Bryan McKinnon (University of Glasgow)
- Pierre Chatagnon (Institut de Physique Nucléaire d'Orsay)
- Jiwan Poudel (Old Dominion University)
- Joseph Newton (Old Dominion University)

[1] R. Aaij et al. (LHCb Collaboration), Observation of a narrow pentaquark state, $P_c(4312)^+$, and of two-peak structure of the $P_c(4450)^+$, *Phys. Rev. Lett.* **122** 22 (2019).

[2] A. Ali et al (GlueX Collaboration), First measurement of near-threshold J/ψ exclusive photoproduction off the proton, *Phys. Rev. Lett.* **123** 072001 (2019).