

CLAS/CLAS12 N* Program

The N* program is one of the key physics foundations of Hall B

 CLAS & CLAS12 were designed to measure cross sections and spin observables over a broad kinematic range for exclusive reaction channels:

πN, ωN, φN, ηN, η'N, ππN, KY, K*Y, KY*

- The goal is to probe the *spectrum* of N* states and their *structure*
 - Probe underlying degrees of freedom via studies of the $Q^2\,$ evolution of the electroproduction amplitudes
 - The N* electrocouplings do not depend on how the states decay but different final states have different hadronic decay parameters and backgrounds

N* degrees of freedom??

- Agreement offers model-independent support for findings
 - Data can unravel the spectrum of contributing states in complementary manner relative to photoproduction

K⁺**Y** Exclusive Electroproduction

The dominant part of the world data for K⁺Y electroproduction is from the CLAS elf dataset

D.S. Carman et al., Phys. Rev. C 87, 025204 (2013)

- elf data sample $K^+\Lambda$: 364k events
- (e'K⁺ topology) $K^+\Sigma^0$: 156k events

RG-A and RG-K - KY Analysis Notes

RG-A Fall 2018 Inbending Dataset

In this (Q^2 ,W) kinematic range the RG-A f18 data has:

- Comparable statistics to e1f in the CLAS $\ensuremath{\mathsf{Q}}^2$ range
- Significantly extends Q² range up to 10 GeV²
- Poor MM resolution makes separation of Λ and Σ^0 final states challenging

RG-A Inbending Yield Determination

- 1) Generate MC templates for $K^+\Lambda$ and $K^+\Sigma^0$ in bins to match the data
- Approach:
- 2) Fit data with templates plus background function
- 3) Convolute templates with Gaussian to minimize χ^2 and match MC to data
- 4) A critical step is to include momentum corrections to position the Λ and Σ^0 peaks at their PDG masses

RG-A Inbending Yield Estimates

Estimate for full inbending RG-A dataset

$ $ Q^2	W	CLAS12 RG-A	CLAS12 RG-A
$ m GeV^2$	${ m GeV}$	$\operatorname{Yield}_{\Lambda}$	$\operatorname{Yield}_{\Sigma^0}$
1.4 - 2.2	1.7 - 1.75	49874	11217
2.2 - 3.0	1.7 - 1.75	68241	10555
3.0 - 3.9	1.7 - 1.75	46627	5277
4.0 - 5.0	1.7 - 1.75	24580	1742
5.0 - 6.0	1.7 - 1.75	10605	828
6.0 - 7.0	1.7 - 1.75	5148	302
7.0 - 8.0	1.7 - 1.75	2304	180
8.0 - 9.0	1.7 - 1.75	1217	100
9.0 - 10.0	1.7 - 1.75	525	57
10.0 - 11.0	1.7 - 1.75	208	36
1.4 - 2.2	1.9 - 1.95	56268	28375
2.2 - 3.0	1.9 - 1.95	72871	32774
3.0 - 3.9	1.9 - 1.95	47440	17568
4.0 - 5.0	1.9 - 1.95	24314	6364
5.0 - 6.0	1.9 - 1.95	9914	3110
6.0 - 7.0	1.9 - 1.95	4809	1533
7.0 - 8.0	1.9 - 1.95	2606	720
8.0 - 9.0	1.9 - 1.95	1144	324
9.0 - 10.0	1.9 - 1.95	504	316
10.0 - 11.0	1.9 - 1.75	172	136

E12-06-108A proposal estimated yield in 2 W bins @ 1.7 and 1.9 GeV

Differences between CLAS12 RG-A data and proposal estimates: 1) Ran at lower luminosity: $F_1=75 \text{ nA/40 nA} = 1.875$ 2) Lower tracking efficiency $F_2 = 1/(0.84*0.84) = 1.42$ 3) Current analysis has only FD K⁺: $F_3 = 1.25$

 \Rightarrow Overall reduction $F_1 * F_2 * F_3 = 3.3$

Reduction in statistics compared to the proposal estimates will ultimately limit the maximum Q^2 range of the data analysis (10 GeV² \rightarrow 7 GeV²)

RG-K Fall 2018 6.5 GeV Dataset

In this (Q^2 ,W) kinematic range the RG-K f18 data has:

- Allows for connection of the regime of low-energy to highenergy N* structural d.o.f.
- Hyperon final state separation feasible

Data from 10 runs 6b.5.1 cooking

RG-K Yield Determination

- 1) Generate MC templates for $K^+\Lambda$ and $K^+\Sigma^0$ in bins to match the data
- Approach:
- 2) Fit data with Itemplates plus background function
- 3) Convolute templates with Gaussian to minimize χ^2 and match MC to data
- 4) A critical step is to include momentum corrections to position the Λ and Σ^0 peaks at their PDG masses

RG-K Yield Estimates

Estimate for full 6.5 RG-K

O^2	TAZ	CLACIO DO K	CLAS19 DC K
Q^{-}	VV	ULASIZ RG-K	ULASIZ RG-K
${ m GeV^2}$	${ m GeV}$	Yield_Λ	$\operatorname{Yield}_{\Sigma^0}$
0.3 - 0.8	1.7 - 1.75	1076760	163460
0.8 - 1.4	1.7 - 1.75	525190	146980
1.4 - 2.2	1.7 - 1.75	247710	71890
2.2 - 3.0	1.7 - 1.75	91360	14420
3.0 - 3.9	1.7 - 1.75	43560	5760
4.0 - 5.0	1.7 - 1.75	11540	920
0.3 - 0.8	1.9 - 1.95	1344040	870760
0.8 - 1.4	1.9 - 1.95	558050	330730
1.4 - 2.2	1.9 - 1.95	244210	140490
2.2 - 3.0	1.9 - 1.95	93310	40990
3.0 - 3.9	1.9 - 1.95	43360	16680
4.0 - 5.0	1.9 - 1.95	6280	1440

E12-16-010A proposal estimated yield in 2 W bins @ 1.7 and 1.9 GeV

Differences between CLAS12 RG-K data and proposal estimates: 1) Ran at lower luminosity: $F_1=75$ nA/60 nA = 1.25 2) Lower tracking efficiency $F_2 = 1/(0.76*0.76) = 1.73$ 3) Current analysis has only FD K⁺: $F_3 = 1.33$

 \Rightarrow Overall reduction $F_1 * F_2 * F_3 = 2.9$

Statistics in RG-K will allow for:

 KY electroproduction measurements up to Q² = 2 GeV² comparable to CLAS photoproduction

RG-A Monte Carlo Studies

CLAS12 CM Angular Coverage

- The first analysis objective is to extract the separated structure functions σ_T + $\epsilon\sigma_L$, σ_{TT} , σ_{LT} , $\sigma_{LT'}$ in bins of Q², W, cos θ_K^{cm} , Φ
- The physics goals are to ultimately learn about the spectrum and structure of contributing *s-channel* baryon resonances
- The CLAS12 Central Detector covers a *critical* portion of the phase space for this analysis

eK⁺p Topologies - RG-A Data

Daniel S. Carman - CLAS Collaboration Meeting - July 23, 2020

RG-A Beam-Recoil Λ Transferred Polarization

RG-A Beam-Recoil Λ Transferred Polarization

- Polarization analysis summed over Q², cos $\theta_{\text{K}}^{\text{c.m.}}, \Phi$
- Sign agrees with CLAS e1-6 analysis
- Integration over

 forces P'_{y'} to be
 zero; deviations provide a measure of
 systematics

$$\begin{aligned} \mathcal{P}'_{x'} &= \sqrt{1 - \epsilon^2} \cdot \frac{R_{TT'}^{x'0}}{R_T^{00} + \epsilon R_L^{00}} \\ \searrow \mathcal{P}'_{y'} &= 0 \\ \mathcal{P}'_{z'} &= \sqrt{1 - \epsilon^2} \cdot \frac{R_{TT'}^{z'0}}{R_T^{00} + \epsilon R_L^{00}} \end{aligned}$$
Need accurate helicity-gated yield extraction for meaningful results

Ongoing and Future Work

- Generate Monte Carlo on OSG to test datadeveloped EG genKYandOnePion
- When GEMC 4.4.0 is available, generate sufficient statistics to evaluate deficiencies of EG compared to the data
- Generate Monte Carlo KY templates to perform reliable yield extractions
- Determine acceptance functions to allow for initial cross section extraction to begin systematic studies and compare to CLAS results
- Extract preliminary beam-recoil transferred polarizations for t-channel dominated FD acceptance
- With Hadron Structure Group include:
 - Momentum corrections
 - Final binning choices
 - Radiative corrections
 - Bin migration studies