

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Introduction

- → The eventbuilder PID will be used as a basis for all particles
- ➔ Fiducial cuts are needed for the PCAL (electrons and photons) and for the DC (electrons and hadrons)
- → Small refinements have been added for the single particle types

Eventbuilder Particle ID and Refinements

a) Electron ID

- → For the first SIDIS publications, only electrons in the FD will be used
- \rightarrow This is ensured by a cut on the status of the particle
- \rightarrow In addition, the following cuts are applied

Cut	Limits	refinement
Charge	-1	
Number of Photoelectrons	$N_{ph} > 2$	
Min. PCAL Energy	$PCAL_{dep} > 60 \text{ MeV}$	> 70 MeV
Sampling Fraction vs E_{dep}	$\pm 5\sigma$	E/p > 0.17

+ z-vertex cut

Minimum PCAL Energy Threshold Cut

eventbuilder: 0.06 GeV refined cut: 0.07 GeV

 The refined cut is survived by 99.85 % of PID 11 electrons

➔ No significant effect, motivated by the distribution

- For BSA a well defined sampling fraction cut border is not required as for cross sections
- The 5 σ region provided by the eventbuilder is sufficient to keep the pion contamination small
- lower threshold for E/p:
 - reduce the contamination at small momenta
 - catch slightly wrong parametrisation from the evb

```
E/p > 0.17
```

Refinement: Cut on the z-vertex position

Figure 3.3: Distribution of the z-vertex position overlapped for the 6 sectors for in-bending (left) and out-bending (right) electrons.

$$v_z \in [-13, +12]$$
 $v_z \in [-18, +10]$

Hadron ID

b) Hadron ID

- → For the first SIDIS publications, only hadrons in the FD will be used
- → This is ensured by a cut on the status of the particle
- → A particle is only considered a hadron, when it did not pass the electron ID
- ➔ The difference between the start-time corrected time recorded at the TOF detector and expected (calculated) time based on the path length and track momentum is used as a PID criterium.

The PID is assigned which minimizes:

$$\Delta t = t_{start_time} - \left[t_{FTOF} - \frac{L}{\beta_h(p)} \right] \qquad \beta(p) = \frac{p}{\sqrt{p^2 + m_h^2}}$$

Define: chi2PID as the number of sigmas in Δt , the particle is away from 0

→ Assign particle to the species which minimizes chi2PID

Hadron ID

Refinement: Cut on the vertex difference between electrons and hadrons

Figure 3.4: Vertex difference between the hadrons and the electron for the different hadron species: protons, π^+ , π^- , K^+ and K^- (from left to right and top to bottom). The cut positions are marked as vertical red lines.

$$|v_z(ele) - v_z(had)| < 20cm$$

Eventbuilder χ^2 PID distributions from the eventbuilder for SIDIS pions:

07/22/2020

Particle ID and fiducial volume

Stefan Diehl, JLU + UCONN

• Kaons are expected at positive chi2PID values

Lower cut border: No contamination expected \rightarrow Use the 3 sigma region

 $\chi^2 PID > 3 * 0.88 = 2.64$ for π^+ $\chi^2 PID > 3 * 0.93 = 2.79$ for π^-

Upper border: contamination from Kaons

Upper border: A momentum dependent cut is needed to keep the pion contamination under control

- ➔ The closest distance assignment of the eventbuilder already reduces the Kaon contamination significantly
- → Refine the eventbuilder PID to get a clear cut border
- → Require that the cut is at half the distance in beta between the pions and kaons
 - \rightarrow Contamination limited to 20 30 % at the highest pion momenta

More clean version for systematics: Require that the cut is 1 sigma away from the mean value of the pion distribution

- → Contamination < 10 15 % at highest pion momenta
- → Contamination of < 5 8 % in the intermediate momentum range
- ➔ Pion survival rate at high momenta reduced compared to the standard method

C = 0.88 for π^+ C = 0.93 for $\pi^$ standard cut:

p < 2.44 GeV: chi2PID < C * 3

p >= 2.44 GeV:

chi2PID < C * (0.00869 + 14.98587 * exp(-p/1.18236) + 1.81751 * exp(-p/4.86394))

stricter cut:

```
p < 2.44 GeV: chi2PID < C * 3
2.44 <= p < 4.6 GeV:
chi2PID < C * (0.00869 + 14.98587 * exp(-p/1.18236) + 1.81751 * exp(-p/4.86394))
p >= 4.6 GeV:
```

chi2PID < C * (-1.14099 + 24.14992 * exp(-p/1.36554) + 2.66876 * exp(-p/6.80552))

3,5

3,0

cut position in

13

half distance

1 sigma away

Photon ID Refinement

c) Photon ID

- → For the first SIDIS publications, only photons in the FD will be used
- \rightarrow This is ensured by a cut on the status of the particle
- → The eventbuilder requires a neutral charge (no DC track)
- \rightarrow The photon neutron separation is done via the β value from the calorimeter

• PCAL fiducial cuts are needed for electrons and photons

MC simulation

Figure 50: Monte Carlo simulation of the sampling fraction as a function of the V and W coordinates.

strictness	V	W
loose	$> 9.0 \mathrm{~cm}$	$> 9.0 \mathrm{~cm}$
medium	> 14.0 cm	$> 14.0 { m cm}$
tight	$> 19.0 \mathrm{~cm}$	$> 19.0 \mathrm{~cm}$

- → At least 1 bar of each calorimeter
- → Reasonable sampling fraction
- → Plateau of the sampling fraction reached

Table 14: Parameters for the PCAL fiducial cuts.

Experiment:

- Plots are integrated over all sectors
- Single sectors can show a slightly different behaviour due to dead bars in one of the calorimeter parts
- Since we only want to ensure a proper cluster formation, we do not consider this for BSA

SIDIS BSA publications:

Effect of the PCAL fiducial cut on the π^0 reconstruction:

• We loose 30 % good pi0 but we significantly reduce the background

DC Fiducial Cuts (A. Kripko, JLU Gießen)

- → The DC fiducial cuts are based on the distribution of chi2/NDF from the track
- \rightarrow Cuts can be extracted in the xy- plane and in the local $\theta\phi$ -plane
- → Very similar results but best description of the edge depends on the particle
- i) Extraction in the local $\theta \varphi$ -plane

DC Fiducial Cuts

X^{2} / NDF for different θ bins for electrons

Figure 64: Electron tracking χ^2/NDF distributions as a function of Φ in Θ bins in region 1 sector 1

DC Ffiducial Cuts

X^{2} / NDF for different θ bins for π^{+}

Figure 65: π^+ tracking χ^2/NDF distributions as a function of Φ in Θ bins in region 1 sector 1

DC Fiducial Cuts

Fitted edge of the fiducial volume for π^+ in region 3, sector 1

Figure 63: An example for the fitting of the cut border in region 3 sector 1 for π^+

$$\Phi = a + b * \log(\Theta) + c * \Theta + d * \Theta^2$$

DC Fiducial Cuts

Figure 68: Sector comparison of fiducial cuts in region 1 (left), 2 (middle) and 3 (right) for electrons (top) and π^+ (bottom).

07/22/2020

DC Fiducial cuts

results for electrons

Figure 69: Result of the fiducial cuts for electrons in region 1.

300

200

100

Figure 70: Result of the fiducial cuts for electrons in region 2.

Figure 71: Result of the fiducial cuts for electrons in region 3.

	Electron	Proton	π^+	π^-	K^+	K^-
Region 1	94.3~%	98.6~%	98.9~%	98.5~%	98.1~%	97.6~%
Region 2	98.2~%	$100 \ \%$	99.8~%	99.3~%	99.9~%	99.7~%
Region 3	93.5~%	99.8~%	99.5~%	99.2~%	99.6~%	99.4~%

Survival rate of eventbuilder particles

90000

80000

70000

60000

DC Fiducial Cuts

ii) Extraction of the cut borders in the xy hit plane

 X^2 / NDF vs x for different y bins

DC Fiducial Cuts

Resulting border of the fiducial volume for electrons

Figure 74: An example for the fitting of the cut border in region 3 sector 1.

$$x = a + b * y$$

Comparison for the Different Sectors (Electrons)

Resulting border of the fiducial volume for electrons

Figure 77: Sector comparison of fiducial cuts in region 1 (left), 2 (middle) and 3 (right).

Results for Electrons

Figure 80: Result of the fiducial cuts in region 3.

Conclusion of the DC fiducial cuts

DC fiducial cuts for the SIDIS publications:

- Which cut is used in which case is determined by the accuracy with which the borders can be extracted from the increase in χ²/NDF
- → Both cuts provide very similar results

a) inbending:

- \rightarrow The polynomial cut can be used for electrons and hadrons
- \rightarrow The linear cut is only recommended for electrons, but works very well for them

→ Use linear cut for electrons and polynomial cuts for hadrons!

b) outbending:

- \rightarrow The linear cut works well for electrons and hadrons
- → Use the linear cut for electrons, protons and pions!