Dihadrons from a Longitudinally Polarized Target

– A Run Group C Addition Proposal for PAC48 –

Speaker: Christopher Dilks CLAS Collaboration Meeting 24 July 2020

Co-spokespersons: Harut Avakian, Christopher Dilks*, Orlando Soto *contact

- Update to PR12-11-109, which was deferred in favor of higher priority measurements during initial 12 GeV operations
- Measurement planned to run during approved PAC time for Run Group C SIDIS experiments, e.g., E12-07-107
 - 120 PAC days with NH_3 target \rightarrow polarized protons
 - 60 PAC days with ND₃ target \rightarrow polarized deuterons

Primary Goal:

With the longitudinal target, extend the SIDIS dihadron measurements to:

- Target Spin Asymmetries
- C. Dilks Double Spin Asymmetries

Twist-3 Collinear PDFs

- Twist-3 TMDs are expressible in terms of multi-parton correlators
- Fundamental to understanding TMDs in general
- Physical interpretation through *x-moments*

Beam Spin Asymmetry A_{LU}

- Ongoing measurements in Run Group A of single hadrons and dihadrons
- Physical interpretation via moments:
 - Pion-nucleon σ term: $m_{_{q}} \rightarrow m_{_{N}}$
 - "Boer-Mulders Force": Transverse force exerted by color field on q↑ after scattering, in an unpolarized nucleon

Target Spin Asymmetry A_{∪L} A proposed measurement for Run Group C

Twist-3 Collinear PDF h₁(x)

Helicity Dependent DiFF: G_1^{\perp}

• Accessible in the $sin(\Phi_h - \Phi_R)$ modulation of dihadron A_{LU} and A_{UL} , weighted by P_h^{\perp} / M_h

$$A_{LU}(x, y, z, M_h) = \frac{\langle P_h^{\perp} \sin(\phi_h - \phi_R) / M_h \rangle_{LU}}{\langle 1 \rangle_{UU}}$$

= $\lambda_l \frac{C'(y)}{A'(y)} \frac{\sum_a e_a^2 f_1^a(x) z G_1^{\perp a}(z, M_h^2)}{\sum_a e_a^2 f_1^a(x) D_1^a(z, M_h^2)}$

Matevosyan, et al.

- Phys.Rev. D96 (2017) no.7, 074010
- PoS DIS2018 (2018) 150
- Sensitive to spin-orbit correlations in hadronization; no analogue in single-hadron SIDIS
- Not yet constrained by data; quark-jet hadronization model predicts sizable G_1^{\perp}
- Recent spectator model calculation predicts sign change at the ρ mass
 Luo, et al., Phys.Rev. D101 (2020) no.5, 054020

Spectator Model Prediction

Double Spin Asymmetries

clas

Unpolarized DiFF $D_1 \rightarrow$ Partial Waves

- Constant modulation: $D_{1,ss+pp}$
- -General modulation: $P_{\ell,m}(\cos\theta)\cos[m(\phi_h - \phi_R)] \rightarrow D_1^{|\ell,m\rangle}$
- helps understand asymmetry denominators

Ongoing studies of multiplicities in RGA and RGB

C. Dilks

Subleading Twist Contribution

- Twist-3 DiFF $\widetilde{D}^{\triangleleft}$ e(x) and h_L(x) extractions require knowledge of $\widetilde{G}^{\triangleleft}$, another twist-3 DiFF
 - Twist-3 DiFFs vanish in WW approximation
 - Constraining $\widetilde{D}^{\triangleleft}$ constrains $\widetilde{G}^{\triangleleft}$
 - Additional leverage from A_{LU}/A_{UL}
 - A_{LL}^{const} / $A_{LL}^{cos\phi R}$, cancels σ_{UU} denominator
- Twist-3 PDF $e_L(x)$ vanishes if T-odd behavior only from gauge link

Phys.Rev.D 69 (2004) 074026 Phys.Rev.D 90 (2014) 11, 114027

Target and Current Fragmentation

Experimental Details

Target Sample

Run Group C: Longitudinally Polarized Targets

- \blacksquare NH₃ polarized proton
 - ~85% polarization*

120 PAC Days

- ND₃ polarized deuteron (neutron)
 - ~35% polarization*

60 PAC Days

* assumed values for asymmetry projections, from design specifications

C. Dilks

Photos from ERR presentations by S. Kuhn and C. Kieth

Dilution Factors for $\pi\pi$ Production

- Projections are scaled by aforementioned polarization, dilution, and depolarization factors
- Average dihadron acquisition rate in Run Group A data: 5.1 Hz
- Extrapolate yield to PAC-approved beam time (assuming comparable luminosity)

Asymmetry Projections $h_L(x)$

Asymmetry Projections $h_L(x)$

C. Dilks

Compare projected statistical uncertainties to the CLAS6 measurements (6 GeV electrons on polarized NH_3)

Higher statistics in proposed measurement \rightarrow multidimensional binning

Asymmetry plotted along curve motivated by spectator model predictions (and rescaled, i.e., an estimate)

- Complement Run Group A measurements
- Asymmetry from ND₃ may be too small to see

Asymmetry Projections

Asymmetry plotted at zero (i.e., only showing uncertainty)

- This asymmetry is expected to be small
- This measurement will at least provide upper bounds
- Similar statistical precision expected in partial wave analysis
 - These amplitudes might be rather significant...

C. Dilks

Asymmetry Projections

Summary

- Dihadrons in SIDIS provide access to several parton distribution functions and dihadron fragmentation functions, at leading and subleading twist
- Beam spin asymmetries in Run Group A show significant effects, sensitive to the twist-3 PDF e(x) and the helicity-dependent DiFF G₁[⊥]
- Longitudinally polarized target in Run Group C allows for the extension of this program to target spin asymmetries and double spin asymmetries
 - Sensitivity to twist-3 PDF $h_{L}(x) \rightarrow$ final state quark OAM effects
 - Complementary measurement sensitive to $\mathbf{G}_{\mathbf{1}}^{\perp}$
 - Unpolarized DiFF \mathbf{D}_1 partial waves
 - Leverage on twist-3 DiFFs \rightarrow important for e(x) and h₁(x) extractions
 - Fracture functions
- Approved Run Group C PAC time is sufficient to resolve significant asymmetries, especially those sensitive to h_L(x)