

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

Physics Motivation

- The 3D nucleon structure in momentum space can be described by TMDs
- A way to acess these properties is the semi inclusive deep inelastic scattering

- ➔ A convolution of 4 TMDs and 4 fragmentation functions
- → The results can be used in a global fit to constrain the TMDs and FF

Physics Motivation

Goal of this study: Extract $F_{LU}^{\sin\phi} / F_{UU}$ from single π^+ , π^- and π^0 BSA

$$d\sigma = d\sigma_0 (1 + A_{UU}^{\cos\phi} \cos\phi + A_{UU}^{\cos2\phi} \cos2\phi + \lambda_e A_{LU}^{\sin\phi} \sin\phi)$$

$$BSA = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} = \frac{A_{LU}^{\sin\phi}\sin\phi}{1 + A_{UU}^{\cos\phi}\cos\phi + A_{UU}^{\cos(2\phi)}\cos(2\phi)} \qquad BSA_{i} = \frac{1}{P_{e}} \cdot \frac{N_{i}^{+} - N_{i}^{-}}{N_{i}^{+} + N_{i}^{-}}$$

$$A_{LU}^{\sin\phi} = \sqrt{2\varepsilon(1\!-\!\varepsilon)} \frac{F_{LU}^{\sin\phi}}{F_{UU}}$$

Past: Measurements have been performed with CLAS, HERMES and COMPASS Advantages of CLAS12 Significantly higher statistics Extended kinematic coverage (Q², P_T)

First publication with CLAS12: A multidimensional study in Q^2 , x_B , z and P_T

Experimental Setup and Available Dataset

RG-A data from fall 2018 (pass 1 cooking):

- → 10.6 GeV electron beam → 86.3 % / 89.2 % average polarization
- → liquid H_2 target → Available SIDIS single pion events:

	inb. pid + QA	outb. evb. no QA	
π+	5 * 10 ⁷	1 * 10 ⁸	QA: Common QA scheme "good for BSA"
π	2 * 10 ⁷	1 * 10 ⁸	
π ⁰	1 * 10 ⁷	4 * 10 ⁷	

Electron ID

Basis: eventbuilder

- PCAL fiducial cuts (v, w > 9 cm)
- 2. DC fiducial cuts for the 3 regions
- **3.** Calorimeter sampling fraction: E/p > 0.17
- **4.** PCAL energy deposition > 0.07 GeV
- 5. z-vertex cut

CLAS collaboration meeting

07/22/2020

Hadron ID

1. DC fiducial cuts for the 3 regions

2. z-vertex difference cut

3. Cut on TOF based chi2PID

Photon ID and π⁰ Selection

 PCAL fiducial cut (v,w > 9 cm)

2. Cut on beta
$$~~\beta>0.9~~~\beta<1.1$$

- FD only
- $E_{\gamma} > 600 \text{ MeV}$
- α(e-,γ) > 8°
- all photon pairs
- 2.2 σ cut on π^0 mass

Kinematic Cuts

DIS cut:
$$Q^2 > 1 \text{ GeV}^2$$
 W > 2 GeV

 $y < 0.8 \rightarrow P_{min}(e) = 2.1 \text{ GeV}$

$$P_{min}(\pi^{+}) = 1.25 \text{ GeV}$$

counts

1 D plots: Cut on the final state hadron momentum fraction z

 \rightarrow z > 0.3 removes the "target fragmentation region"

Cut to remove / suppress the contribution from exclusive channels:

07/22/2020

Kinematic Cuts

cut on the $e\pi X$ missing mass

07/22/2020

Kinematic Coverage for π^+ (similar for π^- and π^0)

Stefan Diehl, JLU + UCONN

Beam Spin Asymmetry

 $F_{_{LU}}^{_{\sin\phi}}$ / $F_{_{UU}}$ for a $\mathbf{x_B}$ and $\mathbf{Q^2}$ binning

Comparison to Theoretical Predictions

Wenjuan Mao, Zhun Lu

Eur. Phys. J. C (2014) 74:2910 DOI 10.1140/epjc/s10052-014-2910-7

Prediction reproduces several characteristics of our results

- → Updated calculations from different collaborators are in progress
- ➔ A multidimensional binning will enable a much better comparability with the calculations

A Fully Multidimensional Binning

• With the available statistics, a fully multidimensional binning in Q², x_B , z and P_T becomes possible for the first time

in total: 583 bins x 12 bins in $\Phi \sim 7000$ BSA bins

\pi^+: Q² Dependence (0.3 < z < 0.4, x_B fixed)

Comparison to the Outbending Data (π^+)

→ Increase of statistics even more significant for π -

→ Factor 3 - 5

Combined Inbending and Outbending Data (π⁺**)**

Combined Inbending and Outbending Data

Sources of Systematic Uncertainty

- \rightarrow Uncertainty of the beam polarisation
- → Fiducial cuts and particle ID refinements (strictness of the PID / contamination in the pion sample)
- \rightarrow Acceptance Effects
- \rightarrow Extraction method and higher order moments
- \rightarrow Detector inefficiencies / sector dependence
- → Radiative effects
- \rightarrow Binning / resolution effects

➔ Studys are ready or currently finalized

Comparison Between Inbending and Outbending (π⁺)

Quality of the Fit and Extraction Method

- Each of the fits in the 583 bins provides a chi2/NDF
 - ➔ Can be used to check the quality of the fit
 - chi2/NDF will be provided in the output table to allow a weighting in a global fit

Dependence on the Electron Sector

0,6

0,6

Summary of Systematic Uncertainties

- **Systematic uncertainty for the different electron sectors:** 0.002 0.003 **5 8 %**
 - Same study has been done for the pion sector: 0.002 0.003 5 8 %
 - Hadron ID: 0.001 0.002 3 5 %
 - **Fiducial cuts:** 0.002 0.003 **5 8 %**
 - **Extraction method:** 0.001 0.005 **5 8 %**
 - Radiative effects:3 %

Total systematic uncertainty: ~ 10 %

Background Below the π⁰ Peak

Method 1: A fit of M_{yy} in each kinematic bin

Background Below the π⁰ Peak

black: no bg subtraction red: root BG subtraction blue: full fit with lin. BG

Background Below the π⁰ Peak 0,060 0,06 raw 0,055 raw Method 2: subtracted subtracted 0,050 0,05 0,045 sideband 0,040 0,04 л П 0,035 subtraction $F_{LU}^{sin \phi} / F_{UU}$ 0,030 0,03 sin φ / [0,025 원 400 ×10 ້] L 0,020 8 350 0,02 300 0.015 250 0.010 200 0,01 150 0,005 100 0.000 0.00 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 M²₂ [GeV2] -0.005 -0,010 -0,01 consistent 2 3 5 6 8 4 7 9 0,3 0,5 0,6 0,1 0,2 0.4 Q² [GeV] \mathbf{X}_{B} result 0,07 raw raw 0,07 • typically 10 % 0,06 subtracted subtracted 1 0,05 0,06 · or less reduction 0,04 0,05 · 0,03 F _{LU}^{sin φ} / F_{UU} • << stat. uncer-0,02 0,01 tainty in 4D 0,00 -0,01 • Assign as -0,02 -0,01 -0,03 systematic 0,00 · -0,04 uncertainty -0,05 --0,01 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,0 0,4 0,6 0,8 1,0 1,2 0,2 1,4 in 4D P_T [GeV] z

Stefan Diehl, JLU + UCONN

Conclusion and Outlook

- Inbending and outbending datasets from fall 2018 are available.
- PID refinements and fiducial cuts have been finalized and are currently under dicussion.
- Common SIDIS MC production for pass 1 data is well in progress for the inbending and has started for the outbending dataset.
- The goal for the first publication is to show a multidimensional binning.
 → Available for the first time and very important for global TMD fits.
- The statistics of the inbending dataset is sufficient for a multidimensional binning, but adding the outbending dataset can significantly reduce the statistical uncertainty.
- The analysis note in coordination with the common RG-A analysis note is well in progress.

