

Precision measurements of A = 3 nuclei in Hall B Proposal PR12-20-005

Spokespersons:

- O. Hen, D. Nguyen (MIT),
- A. Schmidt (GWU),
- L. B. Weinstein (ODU),
- E. Piasetzky (TAU),
- H. Szumila-Vance, D. Meekins (JLab)

To be presented to Jefferson Lab PAC-48, August 10–14, 2020

Looking through the isospin mirror...

R. Cruz-Torres, PRL 124 212501 (2020)

Precision measurements of A = 3 nuclei in Hall B

- Advantages of the A=3 System
 - Isospin Mirror System
 - Light and calculable
 - Highly asymmetric
- We propose:
 - 60-day measurement, using 3He, 3H (and d) targets
 - Measure QE (e,e'p) and (e,e'pN) cross sections
- Vastly exceed aims and scope of Hall A program
 - Use high-acceptance to overcome limited luminosity
 - Cover wider and better kinematics, with more impact.

In this talk:

- The Impact of the A=3 System
 - Hall A program showed just a glimpse of what we can learn.
- Putting Tritium in Hall B
 - We have a safe and feasible plan.
- The Proposed Measurement
 - In 60 days, we can tackle important questions.

In this talk:

- The Impact of the A=3 System
 - Hall A program showed just a glimpse of what we can learn.
- Putting Tritium in Hall B
 - We have a safe and feasible plan.
- The Proposed Measurement
 - In 60 days, we can tackle important questions.

Short-range correlations tell us about the isospin-structure of the NN force.

Subedi et al., Science 320, p. 1476 (2008)

Even in neutron-rich nuclei, np-pairs predominate.

M. Duer et al., Nature 560, p. 617 (2018)

M. Duer et al., PRL122, 172502 (2019)

This gives way at very high momentum. Evidence of a scalar repulsive core!

A. Schmidt et al., Nature 578 p. 540 (2020)

This gives way at very high momentum. Evidence of a scalar repulsive core!

I. Korover et al., Submitted to PRL (2020)

Interpretation is complicated by competing reactions.

Interpretation is complicated by competing reactions.

2018 Hall A Tritium (e,e'p) Expt.

• One of 5 experiments in Hall A Tritium Program.

2018 Hall A Tritium (e,e'p) Expt.

3He/3H ratio was more interesting than expected.

R. Cruz-Torres et al., PLB 797 134890 (2019)

We extracted absolute cross sections.

R. Cruz-Torres, PRL 124 212501 (2020)

Anti-parallel kinematics are a huge improvement!

Isoscalar sum is robust to asymmetric final-state effects!

Lessons from Hall A Measurement

- Anti-parallel kinematics reduce effects of FSIs.
- Need absolute cross sections!
- Need both 3He and 3H (and deuterium too!)
 - Isoscalar sum
- To explore:
 - Push p_{miss} to 1 GeV/c
 - Cover broad range of kinematics

In this talk:

- The Impact of the A=3 System
 - Hall A program showed just a glimpse of what we can learn.

• Putting Tritium in Hall B

- We have a safe and feasible plan.
- The Proposed Measurement
 - In 60 days, we can tackle important questions.

- Sealed-cell design
- Separate cells for ³H, ³He, d
- 25 cm total length
- 1.2 kCi of tritium

- Full Azimuthal Acceptance
- Full Acceptance to 120°
- Easier to fabricate than Hall A cell

Material	Tritium	Al Windows	Be Window	Total
$Length(g/cm^2)$	0.085	0.21	0.037	0.33
Luminosity	$3.54 imes 10^{34}$	$8.42 imes 10^{34}$	$1.54 imes10^{34}$	$1.35 imes 10^{35}$

Assume 15 cm of useable target ---> 2E34 of useable luminosity!

A tritium target needs a multi-layer confinement system.

Stage	Layer 1	Layer 2	Layer 3
Installation	Cell	Handling Hut	Hall B
Storage	Cell	Inner Containment Vessel	Outer Containment Vessel
Beam	Cell	Scattering Chamber	Hall B

Target Design continued...

- Operating Temp ≈ 50 K at 100 nA
- Heat load < 1W, mostly on windows

- Separate sealed gas cells for each
 - H₂ density is 0.00275 g/cc (68.75 mg/cm2)
 - D₂ density is 0.00500 g/cc (125 mg/cm2)
 - T₂ density is 0.00330 g/cc (82.5mg/cm2)
 - ³He density is 0.00410 g/cc (102.5 mg/cm2)

In this talk:

- The Impact of the A=3 System
 - Hall A program showed just a glimpse of what we can learn.
- Putting Tritium in Hall B
 - We have a safe and feasible plan.
- The Proposed Measurement
 - In 60 days, we can tackle important questions.

CLAS-12 lets us vastly exceed reach of Hall A measurement.

- Acceptance takes advantage of limited luminosity.
- Kinematic coverage to study:
 - Q²-dependence
 - x_B-dependence

- Higher p_{miss}
- Wider E_{miss}
- θ_{pq} -dependence

A=3: Helium-3 + Tritium @ CLAS12

Quasielastic on A = 3

□ (e,e'): Neutron form factor

□ (e,e'p): Few-Body nuclear Structure

□ (e,e'pN): SRCs

(e,e'): Neutron Form Factor

- ³He(e,e') / ³H(e,e') @ $x_B = 1$ sensitive to σ_n / σ_p
- Measured @ Hall A \w limited Q² coverage
- CLAS12 reaches down to $Q^2 = 0.1$
- Can probe exactly where theory and data show interesting differences

(e,e'p): Few-body nuclear structure

Unique test of:

- few-body nuclear structure.
- Short-range NN interaction
 Reaction mechanisms
 Final-state effects!

CLAS12: x0.1 luminosity x100 acceptance => x10 statistics + larger

kinematical coverage!

(e,e'pN): SRCs

CLAS acceptance will allow multi-nucleon detection!

- Further suppression of final-state effects!
- Detailed map of isospin structure of short-range NN interaction

Beam time requirement

Target:	$^{1}\mathrm{H}$	d	³ He	^{3}H	Total
Measurement Days (6.6 GeV)	1	10	20	20	51
Calibration (inbending field)					1
Target Changes					2
Total at 6.6 GeV:				54	
Measurement Days (2.2 GeV)	0.5	0	1	1	2.5
Calibration (outbending field)					1
Target Changes				2	
Total at 2.2 GeV:				5.5	
Total beam time requested:			59.5		

0.5 PAC day is required for target change

Total number of events:

Reaction	(e, e'pp)	(e, e'pn)
# events (6.6 GeV)	8k	6k

Systematic uncertainty for A=3 measurements

(e,e'p): Few-Body nuclear Structure

- □ Absolute cross-section: 5% point-to-point systematic uncertainty
- □ Cross-section ratio Exp/pwia: 5% point-to-point systematic uncertainty
- □ Isobar sum Exp/pwis: 5% point-to-point systematic uncertainty
- (e,e'pN): NN interaction study
 - □ 5% point-to-point systematic uncertainty

Summary

• A=3 is a vital system!

- Test few-body calculations
- Probe short-range NN interaction
- Study extreme p/n asymmetry
- Constrain reaction effects
- Pin down $G_M{}^n$
- Need both ³He and ³H!

Summary

• A=3 is a vital system!

- Test few-body calculations
- Probe short-range NN interaction
- Study extreme p/n asymmetry
- Constrain reaction effects
- Pin down G_Mⁿ
- Need both ³He and ³H!

Proposed experiment

- CLAS-12 in standard configuration
- Open e- trigger
- 60 days on ³He, ³H, d at 6.6 and 2.2 GeV.
- New target system!

Everything we learn from A=3 will help us interpret data on heavier nuclei!

Back-Up Slides

Momentum distributions

- AV18+UIX
- CD-Bonn+TM

Run plan:

Minimize target changes Only one tritium install Beam-checkout on a non-tritium cell!

Geant4 Study of the Target

- 1.35E35 Total Luminosity
 - Only 2E34 usable tritium luminosity
- Geant4 study to assess how new target design affects DC rates
 - LH₂ used as target material
 - Geant4 can't reliably simulated A=2,3
 - Main source of background is other material, not the gas.
 - Rates are slightly higher
 - Similar rates in SVT
 - Slightly higher occupancy in DC region 1

1E35 on empty 5cm nominal target				
		damage rate		
particles:	krad/yr	rate (MHz)	1 MeV neutron damage rate	
electrons	1.4	1.6	0.1	
pions		0.7	0.5	
neutrons	5	0.013	0.014	
protons	11.4	1	5.7	
gamma	0.2			
pi-	2.5			
pi+	1.5			
e+	0.3			
Total:	19	3.3	6.3	

1E35 on empty tritium target				
		damage rate		
particles:	krad/yr	rate (MHz)	1 MeV neutron damage rate	
electrons	6.5	7.6	0.2	
pions		1.1	0.7	
neutrons	0	0.025	0.021	
protons	27	2.5	14.5	
gamma	0.5			
pi-	2.6			
pi+	2.8			
e+	1.5			
Total:	44.8	11.2	15.4	

1E35 on LH2 5cm nominal target				
		damage rate		
particles:	krad/yr	rate (MHz)	1 MeV neutron damage rate	
electrons	6	11	0.1	
pions		1.3	0.9	
neutrons	0	0.019	0.021	
protons	19.5	2	13.4	
gamma	1.4			
pi-	4.2			
pi+	7.2			
e+	1.9			
Total:	41.5	14.3	14.4	

1E35 on H gas tritium target			
		damage rate	
particles:	krad/yr	rate (MHz)	1 MeV neutron damage rate
electrons	6.6	9.1	0.1
pions		0.9	0.6
neutrons	0	0.032	0.031
protons	24	2.3	13.7
gamma	1		
pi-	2.4		
pi+	4.6		
e+	1.2		
Total:	42.5	12.4	14.5