Update on the A₁ⁿ experiment

Mingyu Chen University of Virginia July 16, 2020

<u>Outline:</u>

- 1. A_{1^n} at High x_{Bj} Region
- 2. Experimental Setup and Status
- 3. Polarized ³He Target Performance
- 4. Online Asymmetry Results
- 5. Summary

Longitudinal Virtual Photon Asymmetry A₁

- $Q^2 = 4$ -momentum of virtual photon squared
- v = Energy transfer
- θ = Scattering angle
- $x = \frac{Q^2}{2Mv}$ = Fraction of nucleon momentum carried by the struck quark

Parallel spins: $\sigma_{_{3/2}}$

Anti-parallel spins: $\sigma_{\!\scriptscriptstyle 1/2}$

$$A_1 = \frac{1}{(E+E')D'} [(E-E'\cos\theta)A_{\parallel} - \frac{E'\sin\theta}{\cos\phi}A_{\perp}]$$

 Angular kinematics for polarized electron scattering

Page:2

 $D' = \frac{(1 - \epsilon)(2 - y)}{y[1 + \epsilon R]}$

Halls A/C Summer Meeting 2020

07/16/2020

 $\frac{O_{\downarrow \rightarrow} - O_{\uparrow \rightarrow}}{O_{\downarrow \rightarrow} + O_{\uparrow \rightarrow}}$

 $A_{\parallel} = \frac{\sigma_{\downarrow\uparrow}}{\sigma_{\downarrow\uparrow}} + \sigma_{\uparrow\uparrow}$

Goals for A₁ⁿ Experiment

- Precisely measure the neutron spin asymmetry A_1^n in the far valence domain (0.61<x<0.77) for the first time.
- Explore the Q^2 dependence of A_1^n with large x value.
- After combining with proton data (CLAS12), extract polarized to unpolarized parton distribution function (PDF) ratios $\Delta u/u$ ($\Delta d/d$) for large x region.
- Give more insights on understanding the spin structure of neutron.

Model	F_{2}^{n}/F_{2}^{p}	d/u	∆ u/u	Δ d/d	A_1^n	A ₁ ^p
SU(6) = SU3 flavor + SU2 spin	2/3	1/2	2/3	-1/3	0	5/9
Valence Quark + Hyperfine	1/4	0	1	-1/3	1	1
pQCD + HHC	3/7	1/5	1	1	1	1
DSE-1	0.49	0.28	0.65	-0.26	0.17	0.59
DSE-2	0.41	0.18	0.88	-0.33	0.34	0.88

• Predictions for x=1 value for various models. From Craig D. Robert et al.

07/16/2020

Previous Results for A¹ and PDF

07/16/2020

Halls A/C Summer Meeting 2020

Experimental Setup

Detectors:

- High Momentum Spectrometer (HMS)
- Super HMS (SHMS)

Electron Beam:

- E_{beam}=2.17 GeV (elastic, Δ(1232))
- E_{beam}=10.38 GeV (DIS, resonance)
- Beam polarization: 85%
 (3% uncertainty by Moller Polarimeter)
- Circular beam raster with 2.0-2.5mm radius
- < 50 ppm charge asymmetry (average over ~ 1–2 hr run)

Polarized ³He target:

- ³He production cell (40cm)
- 55–60% polarization without beam
- 30 uA beam current (doubles performance compare to 6 GeV era)
- 3% uncertainty for polarimetry

PhD students:

A1n: Mingyu Chen (UVa), Melanie Rehfuss (Temple U) Target: Chris Jantzi (UVa)

(Spokespeople: X. Zheng, G. Cates, JP Chen, Z-E Meziani)

07/16/2020

Experimental Status

		Kin	e	Spec	E_b	E_p	θ	beam ti	me
Completed 1-pass					GeV	${\rm GeV}$	(0)	(hours	5)
commissioning		$\Delta(123)$	32)	SHMS	2.183	-1.79736	8.5	4.0	
		Elast	ic	SHMS	2.183	-2.12860	8.5	8.0	
	Kine	Spec	$ E_b$	$ E_p$	$\mid \theta \mid$	e^- product	ion	e^+ prod.	Tot. Time
			GeV	GeV	(0)	(hours)		(hours)	(hours)
-						DIS			
	1	HMS	10.5	6.00	11.7	84.0		0.0	84.0
Completed 5-pass	3	HMS	10.5	2.90	30.0	88.0		0.0	88.0
DIS production	4	HMS	10.5	3.50	30.0	511.0		0.0	511.0
kine 4 kine 8	B	SHMS	10.5	3.40	30.0	511.0		4.0	515.0
Kine C.	C	SHMS	10.5	2.60	30.0	88.0		4.0	92.0
Completed most					Rese	onances			
of the kinematics!	D	SHMS	10.5	6.90	11.0	84.0		0.0	84.0

- Longitudinal asymmetry of elastic scattering and transverse asymmetry of $\Delta(1232)$ are used to check $P_b P_t$ and other systematics.
- The SHMS setting B and HMS setting 4 are used to determine physics asymmetry of ³He at high x, high Q².
- The SHMS setting C and HMS setting 3 are used to cover the medium x with high Q² region in order to improve previous 6 GeV results.
- Due to the limitation of beam time, did not perform HMS kine 1 which measures the physics asymmetry of ³He at low Q² and SHMS kine D resonance measurements which will provide data needed for radiative corrections.

Halls A/C Summer Meeting 2020

Polarized ³He Target

- Free Neutron mean life: 880.2 s
- Neutron carries the majority of the ³He nucleus polarization

12 GeV era target cell performance:

Beam Current: 30uA

Expected in beam polarization: 50%

Luminosity: ~ 2.2x10³⁶ cm⁻²s⁻¹ Convection Cell

Halls A/C Summer Meeting 2020

Page:7

07/16/2020

Polarimetry for ³He in Target Cell

1. Adiabatic Fast Passage Nuclear Magnetic Resonance (AFP-NMR)

Junhao Chen (W&M)

- Magnetic Resonance of ³He Nucleus
- Sweep the holding field under AFP condition to flip the Nucleon spin direction back and forth.
- Relative measurement, calibrate with water NMR or EPR.

2. Pulse NMR Mingyu Chen (UVa)

- Use resonance RF pulse to tilts the Nucleon spin to a certain angle.
- Relative measurement, calibrate with AFP-NMR.

3. Electron Paramagnetic Resonance (EPR) Melanie Rehfuss (Temple)

- Magnetic resonance of the alkali atoms
- Resonance shifted due to polarized ³He, get the resonance frequency difference by flipping the ³He polarization direction.
- Get ³He polarization from resonance frequency difference. Absolute measurement.

07/16/2020

Halls A/C Summer Meeting 2020

Target Performance

- Target cell polarimetry is performed by AFP-NMR in pumping chamber and calibrated with EPR measurements.
- The polarization for Cell Dutch in this plot is ~ 10% higher, need reanalysis the EPR vs. NMR calibration.
- Still need to do detailed analysis to get target polarization in target chamber with systemic uncertainties.

07/16/2020

Halls A/C Summer Meeting 2020

Typical Elastic Run Online Results

(count number of elastic events from SHMS)

Halls A/C Summer Meeting 2020

A_{el} Online Results

Online Results: Elastic Longitudinal Asymmetry

SHMS Run Number

- For "IHWP OUT", multiply all asymmetries with sign=-1 to account IHWP flip.
- The combined asymmetry for SHMS runs is 0.60%, with uncertainty 0.020%. Then $\Delta A/A=3.4\%$.
- The expected physics asymmetry is 2.6%, if we use $85\% P_b$, $50\% P_t$, $0.9 f_{N2}$ and $0.457 f_{QE}$ to calculate the expected raw asymmetry be about 0.45%.

(need further correction for QE asymmetry f_{OE})

$$A_{physics} = \frac{A_{raw}}{P_b P_t f_{N2} f_{QE}}$$

07/16/2020

Halls A/C Summer Meeting 2020

A_{para} Online Results (for each cell, with W> 2 GeV cut, f_N2=0.90)

Halls A/C Summer Meeting 2020

A_{perp} Online Results (for each cell, with W> 2 GeV cut ,f_N2=0.90)

Halls A/C Summer Meeting 2020

A_{phys} Online Results (Combine two Spec, with W> 2 GeV cut, f_N2=0.90)

Halls A/C Summer Meeting 2020

A_{phys} Online Results (Combine two Spec, without W cut, f_N2=0.90)

Halls A/C Summer Meeting 2020

Summary

- The A_{1ⁿ} experiment (E12-06-110) is a flag-ship, high impact experiment which will give more insights on understanding the spin structure of neutron.
- Overcame a lot of challenges during target installation. The polarized ³He target performed well through out the experiment.
- The data collection for A_1^n was finished on March 13th , 2020. Completed 1-pass commission and 5-pass DIS production for high x and medium x region.
- Offline detailed analysis is in progress, and it is a exciting time.

Backup Slides

07/16/2020

Halls A/C Summer Meeting 2020

Analysis Outlook

Halls A/C Summer Meeting 2020

Expected Values of ΔA_1^n for 5-pass Runs

x_{bj}	ΔA_1^n (stat.)	ΔA_1^n (stat.)	ΔA_1^n (stat.)	ΔA_1^n (syst.)	ΔA_1^n (total.)
	Low Q^2	High Q^2	two Q^2 combined		
0.25	0.0027	0.0000	0.0027	0.0133	0.0136
0.30	0.0029	0.0000	0.0029	0.0130	0.0133
0.35	0.0038	0.0544	0.0038	0.0131	0.0137
0.40	0.0056	0.0243	0.0055	0.0135	0.0146
0.45	0.0094	0.0200	0.0085	0.0141	0.0165
0.50	0.0181	0.0191	0.0131	0.0149	0.0199
0.55	0.0606	0.0162	0.0156	0.0162	0.0225
0.60	0.0000	0.0145	0.0145	0.0179	0.0231
0.65	0.0000	0.0157	0.0157	0.0206	0.0260
0.71	0.0000	0.0186	0.0186	0.0257	0.0317
0.77	0.0000	0.0414	0.0414	0.0485	0.0638

Table 1: Statistical and systematic uncertainties for DIS data at different x and Q^2

x_{bj}	ΔA_1^n (stat.)	$\Delta A_1^n(\text{syst.})$	ΔA_1^n (total.)
0.40	0.0335	0.0134	0.0361
0.45	0.0144	0.0138	0.0199
0.50	0.0121	0.0148	0.0191
0.55	0.0130	0.0156	0.0203
0.60	0.0134	0.0175	0.0220
0.65	0.0214	0.0222	0.0308
0.71	0.0271	0.0291	0.0398
0.77	0.0364	0.0376	0.0523
0.83	0.0212	0.0512	0.0555
0.89	0.0958	0.1083	0.1446

Table 2: Statistical and systematic uncertainties for Resonance data at different x and Q^2

07/16/2020

Expected Results

Slide from X. Zheng 's March 2018 readiness review.
 07/16/2020 Halls A/C Summer Meeting 2020