

Hall A/C collaboration meeting 16 July 2020

Bishnu Karki Duke University, North Carolina

On behalf of DVCS collaboration

Nucleon structure

beyond FFs and PDFs

Deep exclusive processes

Form Factors (FFs)
 Spatial distribution
 Momentum distribution

- Generalized Parton Distributions (GPDs)
- ✓ Spatial distribution
- Longitudinal momentum distribution

- Parton Distribution Functions (PDFs)
 - Longitudinal momentum distribution
 - X Spatial distribution

Access to GPDs: Deep exclusive processes

 Nucleon can be described by 4 chiral even GPDs : Quark Helicity 	$\mathbf{H}^{q}, \widetilde{H^{q}}, E^{q}, \widetilde{E^{q}}$		Nucleon helicity	
(DVCS/DVMP) conserved			Conserving	Non-cons.
• 4 chiral odd GPDs : Quark Helicity		Unpolarized	Н	E
(DVMP) not conserved	$\mathbf{H}_{T}^{q}, \widetilde{H}_{T}^{q}, E_{T}^{q}, \widetilde{E}_{T}^{q}$	polarized	\widetilde{H}	\widetilde{E}
				3

Access to GPDs: QCD factorization

In Bjorken limit:
$$Q^2 = -q^2 \rightarrow \infty$$

 $\nu \rightarrow \infty$ } At fixed $x_B = Q^2 / 2M\nu$

k γ^{*} γ^{*} $x+\xi$ $x-\xi$ $(GPDs(x,\xi,t))$ p' p'

Definition of variables:

x: longitudinal momentum fraction carried by struck quark **ξ**: longtitudinal momentum transfer $\approx x_B / (2 - x_B)$ **t**: four momentum transfer related to b_\perp via Fourier transform D. Mueller et al, Fortsch. Phys. 42 (1994)X.D.Ji, PRL 78 (1997), PRD 55 (1997)A.V Radyushkin, PLB 385 (1996, PRD 56 (1997)

Hard/perturbative Part: Calculable

Soft/non-perturbative Part: Nucleon structure is parametrized by GPDs

- Minimum Q² at which factorization holds must be tested through experiments
- Factorization is only proven for longitudinally polarized virtual photons for DVMP

Measuring DVCS cross-section

P₁: beam or target polarization

e₁ : charge of lepton beam

Exclusive π^0 production

- Factorization only for longitudinally polarized virtual photon
- Leading twist handbag approach predicts: $\sigma_1 \sim Q^{-6} \& \sigma_{\tau} \sim Q^{-8}$ i.e. (σ₁>>σ₇)
- Data from deviates from prediction •
- Transversity GPDs models S. V. Goloskokov and P. Kroll, Eur. Phys.J. C65:137,2010

G.R Goldstein, J.O Hernandez S. Liuti Phys. Rev. D84 (2011)

Exploring for the first time the high x_B region (E12-06-114)

DVCS results Unpolarized/Polarized cross-section

F. Georges, A. Johnson, H. Rashad

E=8.5, Q^2 = 3.6, x_B =0.36, t - t_{min} [-0.186, -0.124]

- Results ready for 9 different kinematics
- Twist 2 dominance
- Small contribution from twist 3
- DVCS paper is in preparation

K. Kumericki and D. Muller EPJ Web of conference 112, 2015 K. Kumericki, S. Liuti, and H. Moutarde Eur. Phys. J. A. 52, 2016

π^0 production

Unpolarized
$$\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt}, \quad \frac{d\sigma_{TL}}{dt}, \quad \frac{d\sigma_{TT}}{dt}$$

• L/T not separable in this experiment

Polarized $\frac{1}{2} \left(\sigma^+ - \sigma^- \right) \rightarrow \frac{d\sigma_{LT'}}{dt}$

π^0 event selection

$$\mathsf{M}^{2}_{\mathsf{e}\mathsf{p}\to\mathsf{e}'\gamma\gamma\mathsf{X}} = (\mathsf{e}+\mathsf{p}-\mathsf{e}'-\gamma_{1}-\gamma_{2})^{2}$$

- Signal : coincidence window [-3, 3] ns
- Major source of background are accidentals
- SIDIS: ep ---- ightarrow e'p' π^{0} **x** (different missing mass cut)

Unpolarized cross-section parameters E0=10.59 GeV, x_{R} = 0.60, Q² = 8.4 GeV²

M.Dlamini, S. Ali, Po-Ju Lin, Ho-San Ko, B. Karki

Beam Pol.

Total (Pol.)

1

4.2

1.4

1.2

1.6

 $t_{min} - t (GeV^2)$

• These data will improve the parametrization of the GPDs

0.8

- First time this model confronted to high $x_{_{\rm B}}$ and t, GK predictions are promising
- S. Liuti et. al calculations on progress

0.6

Unpolarized cross-section parameters E0=10.59 GeV, E0=10.59 GeV, x_{R} = 0.60, Q² = 8.4 GeV²

M.Dlamini, S. Ali, Po-Ju Lin, Ho-San Ko, B. Karki

- Larger value of $\sigma_{_{TT}}$ and $\sigma_{_{TL}}$
- Hint for dominance of transversely polarized photon

Polarized cross-section parameter E0=10.59 GeV, E0=10.59 GeV, x_{B} = 0.60, Q² = 8.4 GeV²

M.Dlamini, S. Ali, Po-Ju Lin, Ho-San Ko, B. Karki

Polarized
$$\frac{1}{2} \left(\sigma^+ - \sigma^- \right) \rightarrow \frac{d\sigma_{LT'}}{dt}$$

Small beam asymmetry with large error bar

Q^2 dependence study Unpolarized cross-section ($d\sigma_{\tau} + \epsilon d\sigma_{\mu}$)

M.Dlamini, S. Ali, Po-Ju Lin, Ho-San Ko, B. Karki

$$\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} = C_0 (Q^2)^{\alpha}$$

Model independent feature: Cross-section falls as Q⁻⁶

Conclusion and outlook

• Dominance of transversly polarized virtual photons

- To interpret these data transversity GPDs model required
- Model need to be improved
- If σ_{L} is sufficiently large then GPDs can be extracted with regular QCD factorization
- π^{0} results can improve the GPDs parametrizations
- π^0 paper on progress
- DVCS leading twist dominance, small higher twist contribution
- DVCS paper in preparation

Outlook

- Extension to higher Q^2 and low $x_{_{B}}$
- Energy separation of DVCS cross-section
- Separation of $\sigma_{_{T}}$ and $\sigma_{_{L}}$ for $\pi^{_{0}}$ production

Acknowledgments: Hall A DVCS Collaboration Hall A Collaboration Hall A technical staff Accelerator staff K. Kumericki and D. Müller S.V. Goloskokov and P. Kroll

THANK YOU !

Unpolarized cross-section parameters

S. Ali, Po-Ju Lin, Ho-San Ko, B. Karki

GPDs and their exciting properties

GPDs Quarks helicity and nucleon spin orientation

M. Guidal et al 2013 Rep. Prog. Phys. 76 066202

Unfolding cross-section components

