DVCS using a positron beam in Hall C

Proposal to PAC48 based on LoI to PAC46 A. Camsonne,¹ M. Carmignotto,¹ R. Ent,¹ J. Grames^{*},¹ C. Keppel,¹ M. McCaughan,¹ B. Sawatzky,¹ A. Somov,¹ B. Wojtsekhowski,¹ S. Wood,¹ C. Zorn,¹ M. Caudron,² L. Causse,² P. Chatagnon,² R. Dupré,² M. Ehrhart,² M. Guidal,² S. Habet,² A. Hobart,² D. Marchand,² C. Muñoz Camacho^{*†},² S. Niccolai,² H.-S. Ko,² K. Price,² V. Sergeyeva,² E. Voutier,² S. Zhao,² M. Mazouz^{*},³ S. Ali,⁴ V. Berdnikov,⁴ T. Horn,⁴ G. Kalicy,⁴ M. Muhoza,⁴ I. Pegg,⁴ R. Trotta,⁴ A. Asaturyan,⁵ A. Mkrtchyan,⁵ H. Mkrtchyan,⁵
V. Tadevosyan,⁵ H. Voskanyan,⁵ S. Zhamkochyan,⁵ M. Amaryan,⁶ C. Hyde,⁶ M. Kerver,⁶ H. Rashad,⁶ J. Murphy,⁷ J. Roche,⁷ P. Markowitz,⁸ A. Afanasev,⁹ W. J. Briscoe,⁹
I. Strakovsky,⁹ M. Boer,¹⁰ R. Paremuzyan,¹⁰ T. Forest,¹¹ J. R.M. Annand,¹² D. J. Hamilton,¹² B. McKinnon,¹² D. Day,¹³ D. Keller,¹³ R. Rondon,¹³ J. Zhang,¹³ K. Brinkmann,¹⁴ S. Diehl,¹⁴ R. Novotny,¹⁴ P. Gueye,¹⁵ V. Bellini,¹⁶ D. Dutta,¹⁷ E. Kinney,¹⁸ P. Nadel-Turonski,¹⁹ G. Niculescu,²⁰ S. Sirca,²¹ I. Albayrak,²² M. A. I. Fernando,²³ and M. Defurne²⁴

¹Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606, USA ²Laboratoire de Physique des 2 Infinis Irène Joliot-Curie Université Paris-Saclay, CNRS/IN2P3, IJCLab (Orsay, France) ³Faculté des Sciences de Monastir (Tunisia) ⁴The Catholic University of America Washington, DC 20064, USA ⁵A. Alikhanyan National Laboratory, Yerevan Physics Institute, Yerevan 375036, Armenia ⁶Old Dominion University Norfolk, VA 23529, USA ⁷Ohio University Athens. OH 45701. USA ⁸Florida International University Miami, FL 33199, USA ⁹The George Washington University Washington, DC 20052, USA ¹⁰University of New Hampshire Durham, NH 03824, USA ¹¹Idaho State University Pocatello, ID 83209, USA ¹²University of Glasgow Glasgow G12 8QQ, United Kingdom ¹³University of Virginia Charlottesville, VA 22904, USA ¹⁴ Universität Gießen Luwigstraße 23, 35390 Gießen, Deutschland ¹⁵Facility for Rare Isotope Beams, Michigan State University 640 South Shaw Lane, East Lansing, MI 48824 ¹⁶Istituto Nazionale di Fisica Nucleare

Sezione di Catania, 95123 Catania, Italy ¹⁷Mississippi State University Mississippi State, MS 39762, USA ¹⁸University of Colorado Boulder, CO 80309, USA ¹⁹Stony Brook University Stony Brook, NY ²⁰ James Madison University. Harrisonburg, VA 22807, USA ²¹ Univerza v Ljubljani 1000 Ljubljana, Slovenia ²²Akdeniz Üniversitesi 07070 Konyaalti/Antalya, Turkey ²³Hampton University Hampton, VA 23668 ²⁴Commissariat à l'Energie Atomique 91191 Gif-sur-Yvette, France

* Spokesperson
 [†] Contact person

NPS Collaboration proposal

Motivation

At leading twist:

$$d^{5} \overrightarrow{\sigma} - d^{5} \overleftarrow{\sigma} = \Im (T^{BH} \cdot T^{DVCS})$$

$$d^{5} \overrightarrow{\sigma} + d^{5} \overleftarrow{\sigma} = |BH|^{2} + \Re e (T^{BH} \cdot T^{DVCS}) + |DVCS|^{2}$$

$$\mathcal{T}^{DVCS} = \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi+i\epsilon} + \dots =$$

$$\mathcal{P} \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi} - i\pi H(x=\xi,\xi,t) + \dots$$

Access in helicity-independent cross section

Access in helicity-dependent cross-section

Opposite sign for e- & e+

DVCS with positrons and NPS (proposal to PAC48)

Physics goals and motivation:

- Precise determination of the absolute photon electro-production cross section
- ✓ Clean separation of DVCS² and DVCS-BH interference
- ✓ More stringer constraints on CFFs by combining
 e⁻ & e⁺ data

2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 x _B																	
$x_{ m Bj}$	0.2				0.36						0.5			0.6			
$Q^2 (\text{GeV})^2$	2.0			3.0	3.0			4.0		5.5	3.4 4.8		5.1			6.0	
k (GeV)	6.6	8.8	1	1	6.6 8.8		11	8.8	11		8.8	.8 11		6.6	8.8 1		1
k' (GeV)	1.3	3.5	5.7	3.0	2.2	4.4	6.6	2.9	5.1	2.9	5.2	7.4	5.9	2.1	4.3	6.5	5.7
$O_{ m Calo} (m deg)$	6.3	9.2	10.6	6.3	11.7	14.7	16.2	10.3	12.4	7.9	20.2	21.7	16.6	13.8	17.8	19.8	17.
D_{Calo} (m)	6	6 4		6		3		4	3	4	3						
M_X^2 (GeV ²)	0.17			0.22	0.13 0		0.12	0.15		0.19	0.0	0.09 0.11		0.09			
$_{\rm beam}$ (μA)									5								
Days	1	1	3	1	2	3	2	3	4	13	4	3	7	7	2	7	14

(CeV²)

~<u>7</u>10

E_b = 11 GeV

E_b = 8.8 GeV

_E_b = 6.6 GeV

Same kinematics settings as approved E12—13-010 with electrons

77 days, >5 μA of positrons (unpolarized) Positron data: 25% of statistics of electron data

Same experimental configuration as approved experiment E12-13-010 (exactly)

- Expected positron beam momentum spread comparable with current electron beam
- Positron beam emittance about a factor of 2 larger than current electron beam
- No additional systematic uncertainties expected due to the use of positrons

Positron production and transport

Neutral Particle Spectrometer (NPS)

- 1080 PbWO₄ crystals
- 0.6 Tm sweeping magnet
- F250ADC sampling electronics
- Large opening angle beam pipe
- SHMS as carriage for rotation

Separation of DVCS² and BH-DVCS interference

Projections based on the KM15 model (Kumericki and Mueller, 2015)

Impact on Compton Form Factors (CFFs) extraction

✓ Combined fit of all electron data from approved experiment E12-13-010

(helicity-dependent AND helicity-independent cross sections)

- Fits include LO & LT CFFs, but also +1 helicity-flip CFFs ("HT") and +2 helicity-flip CFFs ("NLO")
- Cross sections generated with CFFs values fitted to 6 GeV data

Impact on Compton Form Factors (CFFs) extraction

(factor of ~2 for HT and NLO)

Correlation coefficients (t=-0.26 GeV²)

Correlations between different CFFs are significantly improved by a combined fit with positrons

 $|\rho_{i,j}| = |\operatorname{cov}[\mathbb{F}_i, \mathbb{F}_j]/(\sigma_i \sigma_j)|$

9

Electrons & Positrons

Sm(Ĩ ,) Sm(Ĥ_) 0.9 0.9 ℜe(Ĥ_) ℜe(Ĥ_) 0.8 0.8 ଞm(H__) Sm(H_) **%e(H_) %e(H_)** 0.7 0.7 ଞm(ୖHୁ,) ິ Sm(ୖ Hຼ_) 0.6 0.6 ℜe(Ĥୁ) ℜe(Ĥୁ) 0.5 0.5 ଞm(H_{^+}) ଞm(H_{₀+}) 0.4 0.4 **ℜe(H_{₀+}) ℜe(H_∩**) ଞm(H̃₊₊) 0.3 0.3 Sm(Ĥ₊,) ℜe(Ĥ... ℜe(Ĥ... 0.2 0.2 Sm(H__) Sm(H__) 0.1 0.1 **ℜe(H₊₊)** ℜe(H₊₊) n 0 (++)mi 3m(H,,) 3m(Ĥ₊₊) ິ(+₀+) 3m(H₀₊) ອີເຄ(H₀₊) ວີm(H₀₊) ອີເຄ(H₋₁) ອີເຄ(H₋₁) ße(H,,) βte(Ĥ₊₊) ∭(Ĥ₀₊) %e(H_,) Sm(H_+,) ମିe(H₀,) 3m(H,₁) βte(H__) šm(Ĥ__) βe(H̃₊,) šm(Ĥ__) %e(H___ Sm(H HT NLO LT/LO Much better separation of H & Ht CFFs at LT/LO

(from -94% without positrons to -39% when electron and positrons are combined, in this t-bin)

Electrons only

- > Positrons will help to cleanly separate DVCS² and BH-DVCS interference
- Strong impact on GPD CFFs fits and extraction
- > We request 77 PAC days of (unpolarized) positrons at I \ge 5 μ A
- > Same setup (HMS+NPS) and kinematics of approved experiment E12-13-010