MEASUREMENTS OF TRANSVERSE BEAM ASYMMETRY FOR ELASTIC ELECTRON SCATTERING OFF VARIOUS NUCLEI FROM PREX-II AND CREX

Caryn Palatchi, University of Virginia

Jefferson Laboratory Hall A/C Meeting 07/16/2020

A_N MEASUREMENTS PURPOSE

A_n is a direct probe of higher-order photon exchange

- Incident beam is vertically polarized
- Change sign of vertical polarization
- Measure fractional rate difference

 $\sigma \uparrow (\downarrow)$ elastic scattering xsec for e-'s with spin P_e parallel (or antiparallel) to the normal vector defined by the scattering plane

$$A_{\rm n}^{\rm m} = A_{\rm n} \vec{P}_{\rm e} \cdot \hat{n}$$

- A_n: beam-normal single spin asymmetry in elastic scattering of electrons polarized perpendicular to the scattering plane off unpolarized nucleons
- A_n is a direct probe of higher-order photon exchange, the inclusion of which is necessary for interpretation of A_{PV} data
- At higher energies, excited intermediate nuclear states become important for determining A_n in dispersive calculations, which neglect Coulomb distortions, and have most success in forward angle scattering
- Measured via fractional rate difference between incident electron beam vertical polarization states on unpolarized target
- A_n can contribute systematic uncertainty to the extracted A_{PV} (in elastic electron scattering experiments like PREX and CREX) if the beam polarization has a transverse component and the apparatus lacks perfect symmetry

- The momentum resolution of the spectrometers ensured that essentially only elastic events were accepted.
- Analog integration of everything that hits the detector
- electron polarization was set vertical: A_n modulated by sine of the azimuthal scattering angle
- ensured acceptance of the two spectrometers (symmetrically placed to accept horizontally scattered events) contained the maximum and minimum of the asymmetry

Targets

- Diamond foils excellent thermal conductivity
- ¹²C is isoscaler, spin-0, A_{pv} is well-measured, so benign background! (dilution, not false asymmetry)
- 70uA limited in PREX because of target thermal properties

0.5mm lead, 0.25mm diamond, 1 sqin Use synchronized 4x4mm raster to handle non-uniform lead thickness

1.1g/cm2 ~2x2mm raster

- Target has good thermal conductivity, so can run at higher 150uA current
- New Target sandwiched 3 pucks together: ~92% 48Ca

Kinematics

- Data obtained in Su 2019, Sp 2020 during PREX-II and CREX runs where the goal was to determine the radius of the distribution of neutrons
- Data obtained to study systematic uncertainties for these measurements in elastic electron scattering, since A_n can contribute to the extracted A_{PV} if the beam polarization has a transverse component and the apparatus lacks perfect symmetry

Experiment	Target	θ_{lab}	Q ² (GeV ²)	E _b (GeV)	<cosф></cosф>
PREX-II	Carbon-12	5°	0.0066	0.95	0.966
	Pb	5°	0.0062	0.95	0.969
	Ca40	5°	0.0066	0.95	0.974
CREX	Carbon-12	5°	0.033	2.183	0.963
	Pb	5°	0.032	2.183	0.963
	Ca40	5 °	0.030	2.183	0.964
	Ca48	5°	0.030	2.183	0.964

Beam from source to target

Fast Reversals: Statistical Uncertainty & Helicity Flipping

- Helicity switching: Time "windows" are generated in the electron bunch train at a selected flip rate, with the sign of the beam's polarization in each window assigned on a pseudo-random basis.
- Frequency selection for helicity flipping noise, widths, statistical errors
- PREXII 240Hz octets +--+-+- -++--+
- CREX I20Hz quartets +--+ -++-

Widths and Means

$$A_{raw} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$$

MONITOR: I,E,X,Y

- Any change in the polarized beam, correlated to helicity reversal, can be a potential source for a false asymmetry
- Means: Charge asymmetry, Position differences, Spot-size Asymmetry
 - Small as possible
 - Minimize helicity correlated Aq
 - Minimize helicity correlated position differences
- Widths: Beam noise, Monitor Noise
 - smaller widths help statistically
 - larger widths help establish correlations with monitors (ie slopes), which are then used to correct contributions from helicity correlated beam differences (ie. means)
 - Help get corrections (ie shifts)

Slope x Mean = Shift

Raw Data: Ca48 2GeV

$$A_{raw} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$$

regression

dithering

- Left and Right arms symmetrically probe A_n with opposite sign and are combined via $A_{raw} = (A_{Larm} A_{Rarm})/2$
- Sign corrected for IHWP state, several hours were spent at each IHWP state on each target, ~8hours of data shown above
- Beam corrections made via charge normalization
- β_i calculated via beam noise regression and measured several times per hour by dithering steering coils. Both methods results are shown above

Uncertainties

- Nonlinearity in the PMT response was limited to 0.3% in bench tests that mimicked running conditions
- Total relative nonlinearity between the calibration of the PMT response and those of the beam intensity monitors was limited to 2%
- Beam polarization was inferred from longitudinal polarization measurements taken before and after the transverse polarization data taking
- P_e (CREX): 86.9% obtained by averaging both Compton and Moller measurements. P_e (PREX): 89.5% obtained by averaging only Moller measurements for in/out states [and while detailed polarimetry analysis completes, we are assigning a relative uncertainty of 2%.]
- Target impurities in ²⁰⁸Pb (sandwiched between diamond ¹²C foils) and ⁴⁸Ca (partly ⁴⁰Ca) were accounted for via rate ratio calculation and subtraction of measured asymmetries in ¹²C and ⁴⁰Ca. ¹²C contributes ~7% rate(at IGeV) and ~47% rate(at 2GeV, due to FF) in Pb target measurements and ⁴⁰Ca contributes <1% rate in ⁴⁸Ca target measurement.
- Beam asymmetry uncertainties contributed approximately 1-4% in ¹²C, ⁴⁰Ca (and 0.06ppm for ²⁰⁸Pb) at 1GeV and 1-2% in ¹²C, ⁴⁰Ca, ⁴⁸Ca (and 0.09ppm for ²⁰⁸Pb) at 2GeV
- Statistical uncertainties for the ⁴⁰Ca,⁴⁸Ca and ¹²C measurements were approximately 6% (and 0.35ppm for ²⁰⁸Pb) at IGeV and 11% (and 1.9ppm for ²⁰⁸Pb) at 2GeV
- (Note: And small residual longitudinal component of the electron spin will only introduce a negligible parity-violating contribution to the measured asymmetry)

PREX-I and HAPPEX A_n Measurements

OLD Model:

- Gorchstein & Horowitz 2008
- $A_n \sim Q A/Z$
- not strongly Zdependent
- 2-photon exchange calculation
- includes a dispersion integral over intermediate excited states
- neglects Coulomb distortions
- Await new calculations

Phys. Rev. Lett. 109, (2012) 192501

- Previously published 2012
- ${}^{208}Pb A_n \cong 0$ for Q=IGeV
- ¹H,⁴He,¹²C consistent with 2008 Gorchstein theoretical calculation

PREX-II and CREX A_n Results

OLD Model:

- Gorchstein & Horowitz 2008
- $A_n \sim Q A/Z$
- not strongly Zdependent
- 2-photon exchange calculation
- includes a dispersion integral over intermediate excited states
- neglects Coulomb distortions
- Await new calculations

PREX-II and CREX A_n Results

All points here:

- forward angle scattering 5°, 6°
- Clean separation of elastics from inelastics in acceptance

Target	A/Z
Н	1.0
⁴He	2.0
12 C	2.0
²⁰⁸ Pb	2.53
⁴⁰ Ca	2.0
⁴⁸ Ca	2.4

Observe features: New A_n measurements (PREXII,CREX) consistent with old measurements (PREXI)

- ²⁰⁸Pb A_n nearly 0 for multiple Q [from 0.08-0.17GeV] (after ¹²C diamond subtraction)
- ¹²C and ⁴⁰Ca A_n nearly overlap one another for 2 different Q [from 0.08-0.17GeV]
- ${}^{48}Ca$ and ${}^{40}Ca$ A_n overlap one another for these kinematics (despite differing A/Z)

Phenomenological Model

Model:

 Gorchstein & Horowitz 08

•
$$A_{\rm n} = \hat{A}_{\rm n} \frac{QA}{Z}$$

• Forcing fit through (0,0) fails

All points here HRS data forward angle scattering 5°, 6°

Global phenomenological fit presuming linear Q dependent model:

- Observe:⁴He,¹²C, ⁴⁸Ca, ⁴⁰Ca (measured at 5° and 6°) points appear to lie along this linear fit
- Observe: offset is non-zero
- Forcing a fit through (0,0) fails, indicating A_n is not strictly proportionate to Q in this kinematic region

Considering A/Z scaling

Model:		
 Gorchstein & Horowitz 2008 		
• $A_{\rm n} = \hat{A}_{\rm n} \frac{QA}{Z}$	data for scatterir	ward angle ng 5°, 6°
 Plot with A_n 	Target	A/Z
normalized to A/Z	Н	1.0
to remove $\Lambda \overline{7}$	⁴He	2.0
	12 C	2.0
aependence	²⁰⁸ Pb	2.53
	⁴⁰ Ca	2.0
	⁴⁸ Ca	2.4

• For the light and A/Z=2 nuclei (¹H,⁴He,¹²C, ⁴⁰Ca), A_n does appear to satisfy A/Z scaling

Considering A/Z scaling

Model:		
Gorchstein & Horowitz 2008		
$A_{\rm n} = \hat{A}_{\rm n} \frac{QA}{Z}$	data for scatterii	ward angle ng 5°, 6°
Plot with A _n	Target	A/Z
normalized to A/Z	Н	1.0
to remove A 7	⁴He	2.0
	12 C	2.0
aepenaence	²⁰⁸ Pb	2.53
	⁴⁰ Ca	2.0
	⁴⁸ Ca	2.4

- For the light and A/Z=2 nuclei (¹H,⁴He,¹²C, ⁴⁰Ca), A_n does appear to satisfy A/Z scaling
- However there exist other measurements at other angles (i.e. not 5°) such as a new ¹H Qweak point (~8°) which deviates from this rough A/Z scaling

Newer Calculations for Other Measurements

https://arxiv.org/pdf/2004.14682.pdf

Mainz ¹²C Phys.Rev.Lett. 121 (2018) 2, 022503

- Newer dispersive calculations (by Gorchtein) exist which were extended to address larger scattering angle measurements.
- Larger angle scattering measurements require model corrections and may not follow the same trends with Q as small angle scattering, new calculations are awaited
- Gorchtein working on new curve closer to the kinematics of our measurements region

Other Measurements

(smaller angle scattering)

(larger angle scattering included)

- Beginning to develop a landscape of A_n measurements for a range of A and Z at various kinematics
- HAPPEX, PREX and CREX measurements all small angle elastic scattering (5°,6°)
- (Note: larger angle scattering measurements exist but require model corrections and may not be useful for comparison on the same diagram)

Summary

- Achieved: a systematic set of A_n measurements for a range of Z at various beam energies [for the purpose of constraining transverse spin component systematic contributions in A_{PV} measurements of PREX and CREX]
- Observed (for forward elastic electron scattering at 5°) features:
 - New A_n measurements (PREXII,CREX) consistent with old measurements (HAPPEX, PREXI)
 - ²⁰⁸Pb A_n nearly 0 for multiple Q [from 0.08-0.17GeV]
 - ${}^{12}C$ and ${}^{40}Ca$ A_n nearly overlap one another for 2 different Q [from 0.08-0.17GeV]
 - 48 Ca and 40 Ca A_n overlap one another for these kinematics (despite differing A/Z)
 - A_n for ⁴He,¹²C, ⁴⁸Ca, ⁴⁰Ca (while appearing linear with Q) does not appear strictly proportionate to Q in the kinematic range
 - For the light and A/Z=2 nuclei (¹H,⁴He,¹²C, ⁴⁰Ca), A_n does appear to satisfy A/Z scaling.
- Wish: new theoretical calculations that treat dispersion corrections and Coulomb distortions simultaneously
- Hope: might lead to new insights into the structure of heavy nuclei [or just help guide and constrain theoretical calculations]