The Two-Photon Exchange Contribution in Elastic e-n Scattering

On behalf of the nTPE spokespeople;

Sheren Alsalmi - King Saud University (Speaker) Eric Fuchey – University of Connecticut Bogdan Wojtsekhowski- Jefferson Lab

> Hall A/C Summer Meeting July 17th, 2020

Talk Outline

- Theory Overview
- The nTPE Experiment
- ✓ Collaborators
- ✓ Scientific Significance
- ✓ Technique
- ✓ Proposed Measurements
- ✓ Experimental Setup
- ✓ Expected Results

✓ Systematics

Theory Overview

Unpolarized Elastic e-N Scattering

Incident Scattered In the One-Photon Exchange (Born) approximation: Electron Electron $\left(\frac{d\sigma}{d\Omega}\right)_{eN \to eN} = \frac{\sigma_{_{Mott}}}{\epsilon(1+\tau)} \left[\tau \cdot G_{_M}^2(Q^2) + \epsilon \cdot G_{_E}^2(Q^2)\right]$ (1)Virtual Photon **(γ*)** Magnetic **Rosenbluth technique:** Separates the cross section Target Recoil nucleon nucleon into G_M^2 and G_E^2 : $\sigma_r \equiv \left(\frac{d\sigma}{d\Omega}\right) \cdot \frac{\epsilon(1+\tau)}{\sigma_{_{Mott}}} = \tau \cdot G_{_M}^2(Q^2) + \epsilon \cdot G_{_E}^2(Q^2) = \sigma_T + \epsilon \cdot \sigma_L$ (2)5.234e-25 / 0 0.003568 + 1.643e-05 $0.0003585 \pm 2.264e-05$ Linear in ϵ 2^{4.2} 0^{4.2} $\tau \cdot G_{M_{\perp}}^2 + \epsilon_{\perp}$ Two or more measurements, same Q^2 , 3.8 Slope = G_F^2 3.6 different E and θ (different ϵ) 3.4 Intercept = τG_M^2 $\epsilon = [1 + 2(1 + \tau) \tan^2(\theta/2)]^{-1}$ 3.2 Longitudinal polarization of the virtual photon 7/17/20 0.2 0.3 0.1 ϵ

- Rosenbluth technique (LT):
 - Need to make a clean separation of the form factors.
 - ✓ radiative corrections were believed to be well understood (OPE)
 - ✓ Large uncertainties
 - Used to extract proton form factors
 - ✓ Difficult for the neutron (no free neutron targets, the value of G_E^n is small)!
- Polarization transfer technique (PT):
 - measure the polarization of the recoiling hadrons
 - radiative corrections have very small effect

For many years, the proton form factors were extracted using both methods The results should be the same (⇐ a naive guess!)

- At Q² of 4 -5 (GeV/c)², the Rosenbluth slope is 3-4 times larger than expected in OPE.
- The results of the two methods do not agree ⇒ Hint of a missing correction!

- The Two-Photon Exchange (TPE) correction can explain the discrepancy between the Rosenbluth (LT) and the Polarization transfer (PT) measurements.
- Several attempts to measure the TPE for proton.
- TPE has a bigger impact on G_E than G_M (small ϵ -dependent TPE correction can yield large correction to G_E)

Blunden, Melnitchouk and Tjon [Phys. Rev. C**72**, 034612 (2005)]

- O Polarization Transfer measurements
- Rosenbluth measurements
- Corrected Rosenbluth measurement
- Corrected Rosenbluth measurement

- The Two-Photon Exchange (TPE) correction was never studied for the neutron.
- Blunden, Melnitchouk and Tjon [Phys. Rev. C72, 034612 (2005)] gave a prediction of the impact of the TPE correction on G_E^n/G_M^n using the LT (Rosenbluth) method.

The nTPE Experiment

Collaborators

> 70 collaborators! S. Alsalmi, K. Aniol, D. Armstrong, J. Arrington, T. Averett, C. Ayerbe Gayoso, S. Barcus, V. Bellini, J. Bernauer, H. Bhatt, D. Bhetuwal, D. Biswas, W. Boeglin, A. Camsonne, G. Cates, M. E. Christy, E. Cisbani, E. Cline, J.C. Cornejo, B. Devkota, B. Dongwi, J. Dunne, D. Dutta, L. El-Fassi, I. Fernando, E. Fuchey, D. Gaskell, T. Gautam, K. Gnanvo, D. Hamilton, J.-O. Hansen, F. Hauenstein, D. W. Higinbotham, T. Hobbs, M. Jones, A. Karki, A. T. Katramatou, C. Keppel, M. Kohl, T. Kutz, N. Liyanage, D. Mack, P. Markowitz, D. Meekins, F. Meddi, R. Michaels, R. Montgomery, A. Nadeeshani, J. Nazeer, V. Nelyubin, D. Nguyen, T. Patel, G.G. Petratos, C. Petta, A.J.R. Puckett, B. Quinn, P. Reimer, M. Rathnayake, A. Sarty, M. Satnik, B. Sawatzky, A. Schmidt, A. Shahinyan, K. Slifer, G. Smith, C. Sutera, A. Tadepalli, W. Tireman, G. Urciuoli, Z. Wertz, B. Wojstekhowski, S. Wood, B. Yale.

Goals:

- Extract G_E^n by applying the Rosenbluth technique (for the first time!!)
- Study the two-photon exchange contribution on elastic e-n scattering (also, for the first time!!)
- Current Status:
 - Proposed for PAC 48
 - Should run concurrently with two approved experiments (E12-09-019 and E12-17-004)

Technique

• G_E is extracted from the **ratio** of quasi-elastic yields \Rightarrow **reduced uncertainties** (Technique introduced by Bogdan Wojtsekhowski: arXiv:1706.02747)

$$R_{n/p} \equiv R_{observed} = \frac{N_{e,e'n}}{N_{e,e'p}} \tag{3}$$

• The corrected ratio $R_{corr} = f_{corr} \times R_{Observed}$ can be written as:

$$R_{corrected} = \frac{\sigma_{Mott}^n \cdot (1 + \tau_p)}{\sigma_{Mott}^p \cdot (1 + \tau_n)} \times \frac{\epsilon \sigma_L^n + \sigma_T^n}{\epsilon \sigma_L^p + \sigma_T^p}$$
(4)

• Making the measurements for two epsilon points (ϵ_1 , ϵ_2):

$$R_{corrected,\epsilon_1} = R_{Mott,\epsilon_1} \times \frac{\epsilon_1 \sigma_L^n + \sigma_T^n}{\epsilon_1 \sigma_L^p + \sigma_T^p} \qquad \qquad R_{corrected,\epsilon_2} = R_{Mott,\epsilon_2} \times \frac{\epsilon_2 \sigma_L^n + \sigma_T^n}{\epsilon_2 \sigma_L^p + \sigma_T^p}$$

Taking the ratio of the two measurements:

$$A = B \times \frac{1 + \epsilon_1 S_c^n}{1 + \epsilon_2 S_c^n} \approx B \times (1 + \Delta \epsilon \cdot S_c^n)$$
(5)

$$S_c^{n(p)} = \sigma_L^{n(p)} / \sigma_T^{n(p)} \qquad B = R_{Mott,\epsilon_1} / R_{Mott,\epsilon_2} \times (1 + \epsilon_2 S_c^p) / (1 + \epsilon_1 S_c^p) \text{ measured!}$$
7/17/20

Proposed Measurements

Point	Q^2	Е	E'	θ_{BB}	θ_{SBS}	ϵ	
	$({\rm GeV/c})^2$	(GeV)	(GeV)	degrees	degrees		An existing measurement of
1	4.5	4.4	2.0	41.88	24.67	0.599	the approved E12-09-019
2	4.5	6.6	4.2	23.23	31.2	0.838	nTPE proposed measurement

More data points could be obtained if PAC allocate a full week!

- Hall: A
- **Target**: 15 cm LD2 target.
 - Spectrometers: BigBite (electrons) and Super-BigBite (hadrons)

Experimental Setup

Task	Target	I_{exp}	time requested	
Data taking (Prod.)	$15 \mathrm{~cm} \mathrm{~LD}_2$	$30 \ \mu A$	12 hours	
Data taking (Syst.)	4 hours			
Data taking (Prod.)	12 hours			
Data taking (Syst.)	4 hours			
Setting changes (Big	8 hours			
Beam tune after bea	8 hours			
Total	48 hours			

Systematics

Kinematic (ϵ)	$(1) \ 0.599$	(2) 0.838	
Acceptance losses	$0.5 \ \%$	3.0~%	
Inelastic contamination	0.9~%	$0.6 \ \%$	
Nucleon mis-identification*	0.6~%		
Syst. error on $R = f_{corr} \times N_{e,e'n}/N_{e,e'p}$	$1.3 \ \%$	$3.1 \ \%$	
(Quadratic sum of the errors above)			

Syst. error on p cross section $(S^p_c=\sigma^p_L/\sigma^p_T)$	0.01
Syst. error on <i>n</i> form factor $(\mu_n \mathbf{G}_E^n / \mathbf{G}_M^n)$	0.05
Syst. error on Rosenbluth slope (TPE)	0.012

Conclusions

- The nTPE experiment will provide the first measurement of the TPE in the e-n elastic scattering.
- The nTPE experiment will allow measure the G_E^n using Rosenbluth technique for the first time!
- The kinematics of the nTPE measurements emphasize the same Q² range where the TPE in e-p elastic scattering was observed to dominate in Rosenbluth slope.
- The knowledge of the TPE is essential to shape our understanding of the elastic electron nucleon scattering and hadron structure.

Thanks!

Backup Slides

Counting Rates

Point (ϵ)	1 (0.599)	2 (0.838)		
	BigBite	HCal	BigBite	HCal	
	rates (Hz)	rates (Hz)	rates (Hz)	rates (Hz)	
threshold (GeV)	1.32	0.106	2.99	0.090	
Quasi-elastic	$1.62{\times}10^2$	$1.44{ imes}10^2$	$4.39{\times}10^2$	$3.48{ imes}10^2$	
Inelastic	$1.62{\times}10^3$	-	$5.98{\times}10^3$	-	
π^- (Wiser)	$3.08{\times}10^2$	$1.40{ imes}10^6$	$2.95{\times}10^2$	$1.96{ imes}10^6$	
π^0 (Wiser)	$1.15{\times}10^4$	$7.90{\times}10^6$	$1.69{\times}10^3$	$5.77{ imes}10^6$	
π^+ (Wiser)	1.82×10^2 2.87×10^6		$3.07{\times}10^2$	$3.34{ imes}10^{6}$	
Minimum bias	-	$3.39{ imes}10^6$	-	$3.32{ imes}10^6(^*)$	
Total	$1.37{\times}10^4$	$3.39{ imes}10^6$	$8.17\times\!10^3$	3.32×10^{6}	
$(\sum_{\pi(Wiser)} \text{ for HCal})$		/ (1.22×10^7)		/ (1.11×10 ⁷)	
Coincidence rate	$1.39{ imes}10^3$		8.14×10^{2}		
$(\sum_{\pi(Wiser)} \text{ for HCal})$	(5.01×10^3)		(2.72×10^3)		

Experimental Setup

	Step #	task	Q^2	θ_{BB} / θ_{SBS}	Beam	Time	Tech work
			$({\rm GeV/c})^2$	degrees	${\rm GeV}$	hours	time (h)
	4b (install GEn-RP)	GEn-RP		41.9 / 24.7	-	4	4
	4c (GEn-RP)	Production	4.5	41.9 / 24.7	4.4	104 (calendar)	
						(52 PAC hours)	
	4d (remove GEn-RP)	GEn-RP		$41.9 \ / \ 24.7$	-	56	24
	4e (GMn/nTPE low ϵ)	Production	4.5	41.9 / 24.7	4.4	64 (calendar)	
						(32 PAC hours)	
	5a (conf. change)	BB/SBS/HCal		32.5 / 31.1	-	32	16
	5b (beam tune)	beam		32.5 / 31.1	4.4	4	
	5c (GMn)	Production	3.5	$32.5 \ / \ 31.1$	4.4	64 (calender)	
						(32 PAC hours)	
	6a (pass change)	$\mathrm{beam}/\mathrm{BB}$		23.2 / 31.1	6.6	8	4
	6b (beam tune)	beam		$23.2 \ / \ 31.1$	6.6	8	
	6c see Table. X	Production	4.5	$23.2 \ / \ 31.1$	6.6	$64 \ (calendar)$	
						(32 PAC hours)	
	7a (conf. change)	BB/SBS/HCal		58.4 / 17.5		32	16
	+ (pass change)	beam		58.4 / 17.5	4.4	during SBS move	
	7b (beam tune)	beam	-	$58.4 \ / \ 17.5$	4.4	4	
	7c	Production	5.7	$58.4 \ / \ 17.5$	4.4	50 (calendar)	
7/17/20						(25 PAC hours)	