A Possible Observation of Ann Continuum Structure and a Bound Σ NN State using the (e e'K⁺) Reaction

Update on E12-17-003 Experiment Data Taken: October 31 to November 26 2018 Hall A/C summer Joint Collaboration Meeting Jefferson Lab July 16, 2020

Bishnu Pandey Hampton University, Hampton, Virginia

Outlines:

- Physics motivation
- Single arm data analysis
- VDC tracking problem
- Coincidence data analysis
- Analysis result
- Summary

Physics Motivation:

- The YN and YY interactions are difficult to produce as compared to NN interactions.
- Limited data exists for the YN interaction.
- An interaction data does not exist.
- Significant charge symmetry breaking is reported in case of A = 4 isospin mirror pair of hypernuclei.
- The HypHI experiment indicated the existence of either a resonance or the bound state.

Hall A was not Optimized for the Experiment:

- Hall A with tritium target aimed to search for the Ann resonance or the bound state as indicated by HypHI experiment. However, the system was not optimized for this experiment.
- The electron arm was at very large angle $\theta_{e'} = 13.2^{\circ}$, produces large $Q^2 = 0.5 (GeV/c)^2$ which results low production yield.
- The path length for the hadron arm was too large (~ 26 m) which limits the K⁺ survival rate ~ 10 %.
- The $\vec{q}(\Lambda)$ is too high ~ 400 MeV/c which gives very small value of $d\sigma/d\Omega$.
- The K⁺ efficiency of the aerogel detector was very low.
- No cross-section information is available.

Average Z-Vertex for H data:

- Each of the z vertex was optimized with single arm trigger data and then averaged with the coincidence data.
- The z vertex resolution of about $\sigma = 4.5$ mm was achieved.
- To select the events from the gas region, z vertex ranging from -10 cm to 10 cm was selected.

HRS Angle Reconstruction with Multi-foil Target:

- Achieved acceptable angular resolution.
- The RHRS has more background as the hadrons are punching through the sieve slit and producing secondary hadrons .

Coincidence Time Spectrum:

Coincidence Time (ns)

- The time resolution of about 370 ps was achieved for a 2 ns CEBAF beam bunch.
- The K⁺ are cleanly separated from the rest of the hadrons.
- The accidentals are because of the inefficient KID detectors.

Missing Mass Before VDC Tracking Problem:

- The resolution was limited to about 2 MeV is σ which was far from our requirement.
- The VDC tracking problem at the RHRS for the coincidence events was detected.⁸

Raw TDC Spectrum

- After the time jitter correction, both the single and coincidence trigger mode spectrum are in agreement with each other.
- Thanks to Dr. Ole Hansen for his great effort to solve the tracking problem.

Kinematic Space for ee'K+:

- The momentum calibration is the two dimensional correlation.
- There are only three data point to calibrate the momentum matrices.
- There is large kinematic gap between the two Λ correlation lines.
- The optics quality may not be uniform in the gap region.
- The Al data was involved in matrix tune which has negligible angular dependence.

Al is Considered as Target:

• Al region is selected from both beam entrance and beam exit window and combined together for matrix tune.

- After searching the first single state real peak, Al data was involved in tune with Λ and Σ^0 masses.
- Other peaks are gradually involve in tune one by one.

Missing Mass Spectrum:

H/H Kinematics

H/T Kinematics

• The Λ and Σ^0 landed at their known masses with a separation of 76.94 MeV/c^2 (Nominal = 76.96 MeV/c^2).

H Contamination Test:

• Tritium data was tested for H contamination and found ~ 2% of H was present in the Tritium gas which is consistent with other tritium experiments. 14

Mass Spectroscopy of ${}^{3}_{n}\Lambda$:

- The first peak which is the possible resonance was expected, however, the statistics is very small to make a definite identification.
- The peak at the higher excitation was not expected, therefore, its origin is unclear.

Mass Spectroscopy with Higher Bins:

• The enhancement at the Σ bound region was predicted before and is a possible bound Σ hypernuclei.

Conclusions:

- The experiment demonstrated that by using the tritium target and the (e e'K⁺) reaction, it is possible to observe the 3 body final state Λnn and ΣNN interaction. However, Hall A system need to be optimized for higher statistics.
- From this experiment two resonance states of ${}^{3}_{\Lambda}n$ and one bound state of ${}^{3}_{\Sigma}n$ were observed. However, to make a definite identification, higher statistics are required.
- A simulation predicted the intrinsic missing mass resolution of A = 3 resonance to be $\sigma = 0.66$ MeV. Thus, the natural width is about 0.55 MeV.
- However, due to low statistics the precision does not permit sufficient constrain in determination of the Λ -n Interaction.

Thank you

Backup:

