EMC Effect in Lighter Nuclei at 11 GeV

Abishek Karki Mississippi State University Hall A/C 7/16/20

This research is supported by U.S. DOE grant Number :DE-FGO2ER41528

Outline

- Introduction
- Experiment E12-10-008 at Hall C
- Analysis Status
- Summary

Introduction

- DIS measures structure functions F₂(x)
- Energy scales of probe >> Nuclear binding
 - Expected $F_2^A(x) \approx ZF_2^p(x) + NF_2^n(x)$
- Nuclear dependence of structure function: EMC Effect
- Quarks in nuclei behave differently than the quarks in free nucleon
- Extensive measurements on heavy targets
- Different kinematic regions understood in terms of different process

Introduction

Conventional nuclear physics models

- Fermi smearing
- Binding energy
- Nuclear pions

Exotic models

- Multi-quarks clusters (6q, 9q) bags
- Dynamical rescaling
- Modification of nucleon structure

Several models. Some only valid in certain Share regions. Some inconsistent with other reactions

EMC effect has been with us more than 36 + years yet its origin in still unknown

SLAC E139 studied the nuclear dependence of the EMC effect at fixed x

- SLAC E139
 - Most precise large x-data
 - > Nuclei from A = 4 to 197
- Conclusions from SLAC E139
 - > Q²-independent
 - > Universal x-dependence for all A
 - Magnitude varies with A
 - Scales with A ($\sim A^{1/3}$)
 - Scales with average density

Nuclear dependence is interesting as it helps to provide more information to test models

HallA/C 2020

Jlab E03-103

Measured σ_A/σ_D for ³He, ⁴He, Be, C

- ³He, ⁴He, C EMC effect scales well with density
- Be does not fit the trend
- ⁴He matches better with C data and SLAC parameterizations
- Avg nuclear density of ⁴He and C are similar
- Also ⁹Be data matches better with C data.
 However avg nuclear density of Be<<C

Both A- and ρ-dependent fits fail to describe these light nuclei

Results from JLab suggest that EMC Effect does not scale with average nuclear density and hints that the effect may be driven by local environment

• One possible explanation could be even though Avg Nuclear density of Be is relatively low most nucleons are in high local densities of alpha cluster

 $^9Be:$ large components of structure is $2\alpha + n$

SRC and EMC correlation

If the EMC effect is a local density effect, then it seems reasonable to look for connections to other local density effects

- EMC-SRC connection became more intriguing with the addition ٠ of Be SRC data
 - Both display similar Nuclear dependence on nuclear density

This result provides a quantitative test of level of correlation between the two effects

SRC and EMC correlation

If the EMC effect is a local density effect, then it seems reasonable to look for connections to other local density effects

Overview of the experiment(E12-10-008) Phase - I

- Ran during spring 2018 concurrently with E12-10-002 (F $_{\rm 2}$) as a part of commissioning experiment in HallC
- Measurement of inclusive electron scattering cross section from lighter Nuclei
 - Cryo tragets: H, ²H
 - Solid targets: Be, C, Al, ^{10,11}B (Al for cell wall subtraction)
- Single-arm measurement
- Unpolarized electron beam energy 10.6 GeV
- Data were taken at a single (Q^2) /angle (21^0)
 - > Additional data on C were taken at larger angle to investigate detailed Q2-dependence

of the EMC ratios

First Measurement of EMC effect in ^{10,11}B

HallA/C 2020

Detailed Studies of the nuclear dependence of F2 in light nuclei [E12-10-008: J. Arrington, A. Daniel, N. Fomin, D. Gaskell]

- Detector calibration complete
- Extraction of experimental efficiencies complete
- Currently trying to understand the SHMS Acceptance
- Detailed Data/Monte-Carlo comparison is ongoing
- Extraction of EMC ratios are in progress

Cross-section extraction by Monte-Carlo Ratio Method

We simulate Monte- Carlo data using a cross-section model to obtain:

$$Y_{MC}(E',\theta) = L * \sigma^{model} * (\Delta E, \Delta \Omega) * A_{MC}(E',\theta)$$

Taking ratio to data and assuming that $A_{MC} = A$, yields

$$d\sigma/d\Omega dE' = \sigma^{\text{model}*} [Y(E',\theta)/Y_{MC}(E',\theta)]$$

SHMS

Analysis Status

Data to MC

- 10.6 GeV beam energy
- ¹²C at 2.7 GeV, 21⁰
- Delta, ytar, yptar, xptar
- Integral difference $\sim 6\%$
- Data Ytar resolution not so well
- Offset in ytar peak (ongoing)

Data to MC

- 10.6 GeV beam energy
- ${}^{12}C$ at 4.0 GeV, 21°
- Delta, ytar, yptar, xptar
- Integral difference $\sim 2\%$
- Data Ytar resolution not

so well

We took data in HMS and SHMS at same kinematics to cross-check the SHMS 0.2 results as well as for the final_{0.1} results we will add data from HMS

HMS

SHMS

Cross-section extracted from solid target

We used Arie Bodek's fit to proton and deuterium inelastic structure functions, and then a separate fit to the EMC effect in nuclei

SHMS

We used Arie Bodek's fit to proton and deuterium inelastic structure functions, and then a separate fit to the EMC effect in nuclei

HMS

Cross-section extracted from solid target

HallA/C 2020

HMS

Cross-section extracted from cryo- target

HallA/C 2020

EMC ratio

$$\frac{\sigma_{A}^{\prime}/A}{\sigma_{D}^{\prime}/2}$$
 is plotted vs xbj

- Preliminary EMC ratio
- Carbon shape is roughly as expected
- There appears to be some issue with normalization that is under investigation

Future Work

- Check more closely for few anomalies
- Work on radiative corrections model for Boron isotopes
- Extract EMC ratio for other targets

- Experiment E12-10-008 will provides a new data on several nuclei
- First EMC measurements on $^{\rm 10}B$ and $^{\rm 11}B$
- Preliminary EMC ratio for Carbon was shown
- Final results coming soon

Thank you

Backup Slide

Neutron Excess:

$$\left(\frac{\sigma^{A}}{\sigma^{D}}\right) \left/ \left(\frac{\sigma^{A}}{\sigma^{D}}\right)_{is} = \frac{\left(Z + N\frac{F_{2}^{n}}{F_{2}^{p}}\right)}{0.5A\left(1 + \frac{F_{2}^{n}}{F_{2}^{p}}\right)}\right.$$

Currently using SLAC Parameterization:

$$F_2^{n}/F_2^{p} = 1-0.8x$$

