A Precision Measurement of Inclusive g_2 , d_2 with SoLID on Polarized ³He at 8.8 and 11 GeV

A Run-Group Proposal in parallel to E12-10-006/E12-11-007

Chao Peng (Argonne National Laboratory), Ye Tian (Syracuse University) For the SoLID collaboration

Hall A/C Joint Meeting, 07/17/2020

Inclusive Electron Scattering

 Q^2 :Four-momentum transfer

- x : Bjorken variable $(Q^2/2Mv)$
- v: Energy transfer
- M : Nucleon mass
- W : Final state hadronic mass

$$\frac{d^2\sigma}{dE'd\Omega} = \sigma_{Mott} \begin{bmatrix} \frac{1}{\nu} F_2(x,Q^2) + \frac{2}{M} F_1(x,Q^2) \tan^2 \frac{\theta}{2} \\ +\gamma g_1(x,Q^2) + \delta g_2(x,Q^2) \end{bmatrix}$$

spin dependent Structure Function

Spin Structure Function in Parton Model

 \Box g₁ related to the polarized parton distribution functions

$$g_1 = \frac{1}{2} \sum_i e_i^2 \Delta q_i(x) \qquad \Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$$

□ g_2 is zero in the naive parton model non-zero value carries information of quark-gluon interaction Ignoring quark mass effect of order O(m_q/Λ_{QCD})

$$g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \bar{g}_2(x,Q^2)$$

leading twist related to g₁ by Wandzura-Wilczek relation

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(y,Q^2) \frac{dy}{y}$$

Neutron d₂ and Twist-3 Matrix Element

$$\bar{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \left[\frac{m_{q}}{M} h_{T}(y,Q^{2}) + \zeta(y,Q^{2}) \right] \frac{\mathrm{d}y}{y}$$
quark transverse momentum twist-3 part which arises from quark-

 d_2 : the x^2 moment of $\bar{g}_2(x, Q^2)$

$$d_2(Q^2) = 3 \int_0^1 x^2 [g_2(x, Q^2) - g_2^{WW}(x, Q^2)] dx$$
$$= \int_0^1 x^2 [2g_1(x, Q^2) + 3g_2(x, Q^2)] dx$$

- ✓ Calculable on the Lattice.
- \checkmark A clean way to access twist-3 contribution
- \checkmark Dominated by high x data because of weighting

Existing Neutron g₂ Data

- First precise measurement of neutron g_2 from SLAC, averaged $Q^2 \approx 5 \text{ GeV}^2$
- Measurements from JLab 6 GeV era
- The ongoing Hall C d_2^n E12-06-121, 0.2 < x < 0.95 and 2.5 < Q^2 < 7 GeV², with SHMS and upgraded HMS
- We propose to measure g_2^n with SoLID at x > 0.1 and $1.5 < Q^2 < 10 \text{ GeV}^2$

$^{3}\mathrm{He}$	g_2^n, d_2^n, Γ_2^n	$0.5 \le W \le 2.5 \; GeV$	$0.1 \le Q^2 \le 0.9$	JLAB E94–010 [29]
$^{3}\mathrm{He}$	g_2^n	x = 0.2	$0.57 \le Q^2 \le 1.34$	JLAB E97–103 [30]
$^{3}\mathrm{He}$	g_2^n, d_2^n	x = 0.33, 0.47, 0.6	2.7, 3.5, 4.8	JLAB E99–117 [2]
³ He	g_2^n	x < 0.1	$0.035 \le Q^2 \le 0.24$	JLAB E97–110 [31]
$^{3}\mathrm{He}$	g_2^n, d_2^n	$0.25 \le x \le 0.9$	3.21, 4.32	JLAB E06–014 [14]
$^{3}\mathrm{He}$	g_2^n, d_2^n	$0.55 \le x \le 0.9$	$0.7 \le Q^2 \le 4.0$	JLAB E01–012 [33]

Exsiting Neutron d₂ Data

Figure from Phys. Rev. Lett., 113(2):022002, 2014

Test the Burkhardt-Cottingham (BC) Sum Rule

Figure from arXiv: 1807.05250

BC = Measured + Low-x + Elastic

Measured: Measured x-range

Low-*x*: Refers to unmeasured low x part of the integral. Assume $g_2 = g_2^{WW}$

Elastic: From elastics form factors

$$\Gamma_2 = \int_0^1 g_2(x) dx = 0$$

- Validity conditions:
- ✓ g_2 is well-behaved, Γ_2 is finite
- ✓ g_2 is not singular at $x_{B_i} = 0$
- It is verified from world data at 0 < Q² < 5 GeV²
- Elastic and the inelastic contributions to the wrist moment of g₂ cancel for low and moderate Q²

SoLID SIDIS-³He Experiments

- SoLID SIDIS layout without changes
- E12-10-006: Transversely polarized ³He target
- E12-11-007: Longitudinally polarized ³He target
- High in-beam polarization ~ 60%
- Two Beam energies: 11 GeV and 8.8 GeV
- Polarized luminosity with 15 uA current: $1e^{36}$ cm⁻²s⁻¹

Extraction of g_2

$$\Delta \sigma_{\parallel,\perp} = 2\sigma_0 A_{\parallel,\perp}$$

$$g_{1} = \frac{MQ^{2}}{4\alpha^{2}} \frac{\nu E}{(E-\nu)(2E-\nu)} \left[\Delta \sigma_{\parallel} + \tan \frac{\theta}{2} \Delta \sigma_{\perp} \right],$$

$$g_{2} = \frac{MQ^{2}}{4\alpha^{2}} \frac{\nu^{2}}{2(E-\nu)(2E-\nu)} \left[-\Delta \sigma_{\parallel} + \frac{E+(E-\nu)\cos\theta}{(E-\nu)\sin\theta} \Delta \sigma_{\perp} \right]$$

Expected Event Rates

More than 15 kHz free trigger space with 100 kHz DAQ limit Dedicated single electron trigger rate: 103 kHz/10 = 10.3 kHzReusable random coincidence trigger rate: 69 kHz

Rate (kHz) Ecal 7 modules	EC+LGC+SPD 3He+up+down widow
FA e ⁻	59+1.15+1.8
FA hadron no e-	28.6+3.9+ <mark>5.6</mark>
LA e ⁻	4.1+3.6+2.6
LA hadron no e-	7.7+6.5+ <mark>3.8</mark>
FA MIP (hadron) trigger	8013+2591+ <mark>3887</mark>
SIDIS coincidence	31.2
Hadron coincidence	14.7+2.52+2.61=19.83
Total rate	< 85 kHz

Rates Estimation for E12-06-110

Kinematic Coverage

Configuration	Approved Beam Time (hours)	
E12-10-006 (Transverse) @ 11 GeV	1152	
E12-10-006 (Transverse) @ 8.8 GeV	504	
E12-11-007 (Longitudinal) @ 11 GeV	538	
E12-11-007 (Longitudinal) @ 8.8 GeV	228	

Systematic Uncertainty Estimate

Source	Systematic Uncertainty			
Cross Sections				
Detector acceptance	5.0%			
Detector efficiencies	3.0%			
Target density	2.0%			
Beam charge	1.0%			
Background subtraction	3.0%			
Asymmetries				
Dilution effects	< 1.0%			
Beam polarization	< 2.0%			
Target polarization	3.0%			
Charge asymmetry	$< 10^{-4}$			
Pion asymmetry	$< 5 \times 10^{-4}$			
Unfolding Procedure				
Nuclear corrections	$\sim 5.0\%$			
Radiative corrections	$\sim 3.0\%$			
Physics Results				
Cross sections	< 10.0%			
g_2 syst.	$\sim 10^{-3} 10^{-4}$			
d_2 stat.	$\sim 3 \times 10^{-4}$			
d_2 syst. (11 GeV)	$\sim 5 \times 10^{-4}$			
d_2 syst. (8.8 GeV)	$\sim 8 \times 10^{-4}$			

Projections $-x^2g_2$ @ 8.8 GeV

Assumed 55% target polarization, 85% beam polarization, 0.17 nitrogen dilution

- Dedicated triggers assumes a prescale factor of 10
- F₂ from New Muon Collaboration (NMC) parameterization

$$R = g_1^n / F_1^n$$
 from SLAC

- Errors:
- Error bars statistic errors
- Shades systematic errors

Projections $-x^2g_2 @ 11 \text{ GeV}$

Assumed 55% target polarization, 85% beam polarization, 0.17 nitrogen dilution

Projections $-d_2$

Summary

- ★ We propose a parasitic measurement with SoLID-SIDIS ³He experiments E12-10-006 and E12-11-007 to extract neutron g_2 at x > 0.1 and $1.5 < Q^2 < 10$ GeV²
- ♦ Neutron d_2 can be extracted for $Q^2 < 6.5 \text{ GeV}^2$
- ✤ The proposed dataset provides an opportunity to better understand the twist-3 matrix element $d_2(Q^2)$ and hence the associated quarkgluon correlations within the neutron
- ✤ Q^2 evolution of $d_2(Q^2)$ provides a direct test of Lattice QCD.

