Probing Nucleon Spin Structure Using Deep Inelastic Scattering

E12-06-121: Neutron g_2 and d_2

Spokespersons: B. Sawatzky, W. Korsch, T. Averett, Z.-E. Meziani

Murchhana Roy University of Kentucky

July 16th, 2020

- Introduction to DIS
- Existing results and projections
- Hall C layout
- Rate estimates and run plan
- Progress and updates
- Summary

- Introduction to DIS
- Existing results and projections
- Hall C layout
- Rate estimates and run plan
- Progress and updates
- Summary

Deep Inelastic Scattering

Unpolarized cross section:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\,\Omega\,\mathrm{d}\mathrm{E}'} = \frac{\alpha^2}{4\,\mathrm{E}^2\sin^4\frac{\theta}{2}} \left(\frac{2}{\mathrm{M}}\,\mathrm{F}_1(\mathrm{x}\,,\mathrm{Q}^2)\sin^2\frac{\theta}{2} + \frac{1}{\mathrm{v}}\,\mathrm{F}_2(\mathrm{x}\,,\mathrm{Q}^2)\cos^2\frac{\theta}{2} \right)$$

• Unpolarized structure functions ${\bf F}_1$ and ${\bf F}_2$ contain information about the momentum structure of the target nucleon.

Polarized cross section:

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\mathrm{E}'\mathrm{d}\,\Omega}(\downarrow \Uparrow -\uparrow \Uparrow) = \frac{4\,\alpha^{2}\,\mathrm{E}'}{\mathrm{M}\,\mathrm{Q}^{2}\nu\,\mathrm{E}} [(\mathrm{E}+\mathrm{E}'\cos\theta)\mathrm{g}_{1}(\mathrm{x},\mathrm{Q}^{2}) - \frac{\mathrm{Q}^{2}}{\nu}\mathrm{g}_{2}(\mathrm{x},\mathrm{Q}^{2})] = \Delta\sigma_{\parallel} \left| \mathrm{V}_{\mathrm{A}} \mathrm{Q}_{\mathrm{A}}^{2} \mathrm{Q}$$

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\mathrm{E}'\mathrm{d}\,\Omega}(\downarrow \Rightarrow -\uparrow \Rightarrow) = \frac{4\,\alpha^{2}\sin\theta\,\mathrm{E'}^{2}}{\mathrm{M}\,\mathrm{Q}^{2}\nu^{2}\,\mathrm{E}} [\nu\,\mathrm{g}_{1}(\,\mathrm{x}\,,\mathrm{Q}^{2}) + 2\,\mathrm{E}\,\mathrm{g}_{2}(\,\mathrm{x}\,,\mathrm{Q}^{2})] = \Delta\sigma_{\perp}$$

• Polarized structure functions g_1 and g_2 encode information about the spin structure of the target nucleon.

 $Q^2 = 4$ -momentum transfer squared of the virtual photon

$$v_{\parallel} | v = E - E' = energy transfer$$

 θ = scattering angle

x = Fraction of nucleon momentum carried by the struck quark

g₂ and Quark-Gluon Correlations

- In naive quark parton model, nucleon is viewed as a collection of non interacting, point like constituents.
- g_2 has no interpretation in naive quark parton model, provides information on quark-gluon correlation.

• g_2 is among the cleanest higher twist observables – contributes to leading order (twist-2 is leading twist) at the transverse spin asymmetry.

$$g_2(x,Q^2)=g_2^{WW}(x,Q^2)+\bar{g}_2(x,Q^2)$$

• Twist-2 term (Wandzura & Wilczek).

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 \frac{g_1(y,Q^2)}{y} dy$$

• Twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston).

$$\overline{g_{2}(x,Q^{2})} = -\int_{x}^{1} \frac{\partial}{\partial y} \left(\frac{m_{q}}{M} h_{T}(y,Q^{2}) - \xi(y,Q^{2}) \right) \frac{dy}{y}$$
Transversity
Quark-gluon
correlation

d₂: Clean Probe of Quark-Gluon Correlations

d₂ is a clean probe of quark-gluon correlations / higher twist effects - third moment of the linear combination of the spin structure function.

$$d_{2}(Q^{2}) = 3\int_{0}^{1} x^{2} [2g_{1}(x,Q^{2}) + 3g_{2}(x,Q^{2})] dx = 3\int_{0}^{1} x^{2} \bar{g_{2}}(x,Q^{2}) dx$$

- Related to matrix element in OPE, which represents average color Lorentz force on the struck quark due to the remnant di-quark system and it is cleanly computable using Lattice QCD.
- Connected to "color polarizability".

$$\chi_{\rm E} = \frac{(4d_2 + 2f_2)}{3} \qquad \qquad \chi_{\rm B} = \frac{(4d_2 - f_2)}{3}$$

• f_2 is a twist-4 contribution can be extracted from the first moment of g_1 .

$$\Gamma_1 = \int_0^1 g_1 dx = \mu_2 + \frac{M^2}{9Q^2} (a_2 + 4d_2 + 4f_2) + O\left(\frac{\mu^6}{Q^4}\right)$$

Response of the color $\,\vec{B}$ and \vec{E} field to the nucleon polarization

- Introduction to DIS
- Existing results and projections
- Hall C layout
- Rate estimates and run plan
- Progress and updates
- Summary

Existing results: d₂ for proton and neutron

E12-06-121: Projected Results

Projection of $x^2g_2^{n}$ over broad range of x.

Points are vertically offset from zero along lines that reflect different (roughly) constant Q^2 values from 2.5—6 GeV².

• Direct overlap with 6 GeV Hall A measurements.

- Introduction to DIS
- Existing results and projections
- Hall C layout
- Rate estimates and run plan
- Progress and updates
- Summary

E12-06-121: Hall C Layout

Spectrometers:

- Super High Momentum Spectrometer (SHMS).
- High Momentum Spectrometer (HMS).

Electron Beam :

- Beam energies
 - → 10.4 GeV/c (production) [5-pass]
 - → 2.1 GeV/c (calibration) [1-pass]
- Beam current
 - → 30 µA (production)
 - → $45 \mu A$ (max, calibration)
- Beam polarization $\sim 80\%$
 - → Measured to ~3% using Moller polarimetry.

Polarized ³He target:

- 40 cm long ³He cell.
- Target polarization
 - → 45 55% in beam
 - → 55 60% without beam.

E12-06-121: Kinematic coverage

- Reduced kinematic settings vs. proposal to accommodate run-time reduction and lower electron beam energy.
- SHMS collects data at $\theta = 11^{\circ}$, 14.5° and 18.0° for 125 hrs each.
- HMS collects data at $\theta = 13.5^{\circ}$, 16.4°, 20.0° for 125 hrs each.
- Each arm measures an absolute polarized cross section independent of the other arm to extract g_1, g_2 .

SHMS Production						
Setting	P _o	Angle	х	${ m Q^2} \ ({ m GeV^2/c^2})$	W (GeV)	
Х	7.5	11.0°	0.527	2.866	1.859	
Y	6.4	14.5°	0.565	4.240	2.036	
Ζ	5.6	18.0°	0.633	5.701	2.046	

	HMS Production						
Setting	P _o	Angle	Х	${ m Q^2}$ (GeV ² /c ²)	W (GeV)		
А	4.2	13.5°	0.207	2.414	3.178		
В	4.2	16.4°	0.305	3.554	2.993		
С	4.0	20.0°	0.418	5.018	2.806		

Polarized ³He target

- Short lifetime of neutron (886 s), no dense neutron target.
- Effective neutron target: 90% of ³He spin comes from the neutron spin.

- **Polarization method:** Spin exchange optical pumping (SEOP)
 - 1. Optical Pumping
 - 2. Spin exchange
- Polarization measurements:
 - 1. Nuclear Magnetic Resonance (NMR)
 - 2. Pulse NMR
 - 3. Electron Paramagnetic Resonance (EPR)

- Introduction to DIS
- Existing results and projections
- Hall C layout
- Rate estimates and run plan
- Progress and updates
- Summary

E12-06-121: Rate estimates

HMS Kin.	theta (deg)	E' (GeV)	Q ² (GeV ²)	х	W (GeV)	e [.] rate (Hz)	π rate (Hz)	t (Hz)	t⊥ (Hz)	ΔA _{raw} (par) (10 ⁻⁴)	ΔΑ _{raw} (perp) (10 ⁻⁴)
А	13.5	4.2	2.474	0.216	3.14	3083	2973	8.06	116.9	2.71	0.7
В	16.4	4.2	3.643	0.318	2.948	179	100.3	9.6	115.4	4.48	1.297
С	20	4	5.018	0.418	2.806	39	13.9	11.2	113.8	8.91	2.8
SHMS Kin.	theta (deg)	E' (GeV)	Q ² (GeV ²)	x	W (GeV)	e [.] rate (Hz)	π ⁻ rate (Hz)	t (Hz)	t _⊥ (Hz)	ΔΑ _{raw} (par) (10 ⁻⁴)	ΔΑ _{raw} (perp) (10 ⁻⁴)
Х	11	7.5	2.866	0.527	1.859	3153	5.29	9.6	115.4	2.51	0.723
Y	14.5	6.4	4.24	0.565	2.036	528.2	5.62	11.38	113.6	5.63	1.78
Z	18	5.6	5.701	0.633	2.046	80.82	1.06	12.85	112.1	13.5	4.58

 $-\Delta A_{charge} = 0$

• The tables have a first estimate of the expected rates and error in raw asymmetries for the different kinematics (B. Sawatzky, W. Korsch).

Input parameters and assumptions

E [GeV]	l_{tgt} [cm]	ρ_{tgt} (fill) [amg]	ρ_{tgt} (T-corr.) [amg]	\mathbf{P}_{tgt}	\mathbf{P}_{beam}	I [μA	Be [mil]	GE180 $[\mu m]$	A_{charge} [ppm]
10.4	40	8.26	10.56	0.50	0.80	30	10	280	200
	Assur • S	nptions: SHMS - SHMS accep - N ₂ density of - $\Delta P_{tgt} = 0$ - $\Delta P_{beam} = 0$ - $\Delta A_{charge} = 0$ HMS - HMS accepta - N ₂ density of - $\Delta P_{tgt} = 0$ - $\Delta P_{tgt} = 0$ - $\Delta P_{beam} = 0$	tance: 50 cm, -15% , f $1.4 \times 10^{19} \text{ cm}^{-3}$) ance: 10 cm, -10% , + f $1.4 \times 10^{19} \text{ cm}^{-3}$	+25%	(relativ relative	e to p_0) to p_0)			

E12-06-121: Run Plan

Beam time allocation:

A total of **6 calendar weeks** of electron beam time is expected.

SHMS Production			HMS Production		
Setting	P _o	Angle	Setting	P _o	Angle
X	7.5	11.0°	А	4.2	13.5°
Y	6.4	14.5°	В	4.2	16.4°
Z	5.6	18°	С	4.0	20.0°

Start with 5-pass production: SHMS- Kin X, HMS- Kin C (~ 1-2 calendar weeks)

Return to 5-pass production: SHMS- Kin Z, HMS- Kin A SHMS- Kin Y, HMS- Kin B (rest of the beam time, ~3-4 calendar weeks)

E12-06-121: Run Plan

5-pass running (Production)

For each kinematic pair

- Reference cell runs: ³He, N_2
- Empty cell run
- -8 hrs Optics (C-foil + Sieve)-
- Positive polarity runs: 4 hrs optics, 4 hrs production
- Target NMR (1–2 / shift), PNMR, EPR measurements
- Production runs

Instrumentation / Calibration runs

- BPM calibration (2 hour)
- BCM calibration (2 hour)
- Beam energy (2 hour)

1-pass running (Calibration)

Nominal to do list :

- 8 hr Moller run
- 4 hr Optics run at $p_0 = 2.1 \text{ GeV/c}$
- Pressure curves for current cell
- Hydrogen elastics
- Delta QE measurements
- E12-06-121A ³He Elastic Form Factor Measurements

- Introduction to DIS
- Existing results and projections
- Hall C layout
- Rate estimates and run plan
- Progress and updates
- Summary

E12-06-121: Progress and Updates

Field mapping and field direction measurements:

- Both the magnetic field mapping and magnetic field direction measurements in target region were completed in March, 2020.
- The vertical correction coil current settings were optimized to eliminate any vertical magnetic field component and to get reduced gradient along the target cell.
- The magnetic field direction was scanned along the target length using an air floated compass. The uncertainty in the direction measurement was limited to ±0.1°.

Results from Field mapping

Air compass used for field direction measurements

Results from compass measurements

E12-06-121: Progress and Updates

Target preparation and polarimetry:

- Polarized ³He cell "Austin" and the reference cell "Christen" were installed in March.
- Target optics were cleaned up.
- Laser software was upgraded.
- Laser alignment in both transverse and longitudinal direction was done.
- Laser polarization optimized, laser spectrum analyzer calibrated.
- New holding field Kepco power supplies were installed and calibrated.
- Quick magnetic field measurement check was done. Results agreed with the field mapping done in March

Laser box status 06/11

Clean up oven mirrors and windows 06/11

- Longitudinal left line laser spot on oven window (after realignment)
- right line laser spot on oven wind (after realignment)

E12-06-121: Progress and Updates

Target preparation and polarimetry:

- Target polarimetry is working perfectly NMR, PNMR and EPR.
- Target ladder alignment has been completed.

Target ladder alignment

- Cell characterization has been completed for ³He cell "Tommy" (the cell that will be used after "Austin").
- Target spin up and other polarization studies on "Austin" are in progress.

PNMR signal obtained on 07/02/2020

Transverse NMR signal obtained on 07/03/2020

EPR sweep on 07/14/2020

- Introduction to DIS
- Existing results and projections
- Hall C layout
- Rate estimates and run plan
- Progress and updates
- Summary

Summary

- The experiment E12-06-121 (neutron g_2 and d_2) is expected to start production on 27^{th} July, 2020.
- ³He target "Austin" is installed and polarimetry is working.
- Large precision data for g_2 and d_2 over high x and Q^2 will be obtained, d_2^{n} will be evaluated at truly constant Q^2 values for the first time.
- This experiment will provide insight into quark-gluon correlations.
- Several theoretical predictions (especially Lattice QCD) will be verified.

Supporting Documentations

- Polarized Helium-3 Experiments wiki (2019/2020) https://hallcweb.jlab.org/wiki/index.php/Polarized_Helium-3_Experiments
- Proposals
 - https://hallcweb.jlab.org/wiki/images/c/cb/PR12-06-121.pdf
 - https://hallcweb.jlab.org/wiki/images/1/1a/D2n_HallC_PAC36-update_v2.pdf

- Polarized ³He Target
 - https://hallcweb.jlab.org/wiki/index.php/Pol_He-3_Target_Information
 - https://www.jlab.org/indico/event/351/session/1/contribution/9/material/slides/0.pdf
- E06-014 (2009 d_2^{n} experiment) wiki

Back-up Slides

Twist Expansion

* Quark electromagnetic current in forward Compton amplitude,

$$T_{\mu\nu} = i \int d^4 z \; e^{iqz} < N \left| T \left(j_{\mu}(z) j_{\mu}(0) \right) \right| N >$$

- Operator product expansion (OPE) : $j_{\mu}(z)j_{\mu}(0) = \sum C_{\mu_1\dots\mu_n} \mathcal{O}_{d,n}^{\mu_1\dots\mu_n}$

• Dimension Analysis :
$$C_{\mu_1\dots\mu_n} \mathcal{O}_{d,n}^{\mu_1\dots\mu_n} \longrightarrow \frac{q_{\mu_1}}{Q} \dots \frac{q_{\mu_n}}{Q} Q^{2-d} M^{d-n-2} p^{\mu_1} \dots p^{\mu_n}$$

 $\rightarrow \frac{P.q}{Q^n} Q^{2-d} M^{d-n-2}$
 $\rightarrow \left(\frac{1}{x}\right)^n \left(\frac{Q}{M}\right)^{2+n-d}$
 $\rightarrow \left(\frac{1}{x}\right)^n \left(\frac{Q}{M}\right)^{2-t}$

	Quark	Gluon
d	3/2	2
n	1/2	1
t	1	1

+1/2

1/2

Twist, t = d-n

Systematic Error Table

Item description	Subitem description	Relative uncertainty
Target polarization		1.5 %
Beam polarization		3 %
Asymmetry (raw)		
	 Target spin direction (0.1°) 	$< 5 imes 10^{-4}$
	 Beam charge asymmetry 	< 50 ppm
Cross section (raw)		
	• DID afficiancy	< 1.%
	 Background Rejection efficiency 	< 1 % ~ 1 %
	Beam charge	< 1 %
	Beam position	< 1 %
	Acceptance cut	2-3 %
	Target density	< 2%
	 Nitrogen dilution 	< 1 %
	Dead time	<1%
	• Finite Acceptance cut	<1%
Radiative corrections		\leq 5 %
From ³ He to Neutron correction		5 %
Total systematic uncertainty (for both $g_2^n(x, Q^2)$	and $d_2(Q^2))$	$\leq 10~\%$
Estimate of contributions to <i>d</i> ₂ from unmeasured region	$\int_{0.003}^{0.23} \tilde{d}_2^{p_1} dx$	4.8×10^{-4}
Projected absolute statistical uncertainty on d_2		$\Delta d_2 \approx 5 \times 10^{-4}$
Projected absolute systematic uncertainty on d_2 (<i>assuming</i> $d_2 = 5 \times 10^{-3}$)		$\Delta d_2 \approx 5 \times 10^{-4}$

Neutron Asymmetries from ³He

•
$$A_1^n = \frac{1}{P_n} \frac{F_2^{3He}}{F_2^n \left(1 + \frac{0.056}{P_n}\right)} \left(A_1^{3He} - 2P_p \left(1 - \frac{0.014}{2P_p}\right) \frac{F_2^p}{F_2^{3He}} A_1^p \right)$$

•
$$A_2^n = \frac{1}{P_n} \frac{F_2^{^3He}}{F_2^n \left(1 + \frac{0.056}{P_n}\right)} \left(A_2^{^3He} - 2P_p \left(1 - \frac{0.014}{2P_p}\right) \frac{F_2^p}{F_2^{^3He}} A_2^p \right)$$

$$P_p, P_n$$
: Effective
proton and neutron
polarizations in $\mathbf{3}_{He}$

•
$$\frac{g_1^n}{F_1^n} = \frac{1}{P_n} \frac{F_2^{3He}}{F_2^n \left(1 + \frac{0.056}{P_n}\right)} \left(\frac{g_1^{3He}}{F_1^{3He}} - 2P_p \left(1 - \frac{0.014}{2P_p}\right) \frac{F_2^p}{F_2^{3He}} \frac{g_1^p}{F_1^p}\right)$$

$$\cdot \frac{g_2^n}{F_1^n} = \frac{1}{P_n} \frac{F_2^{^3He}}{F_2^n \left(1 + \frac{0.056}{P_n}\right)} \left(\frac{g_2^{^3He}}{F_1^{^3He}} - 2P_p \left(1 - \frac{0.014}{2P_p}\right) \frac{F_2^p}{F_2^{^3He}} \frac{g_2^p}{F_1^p}\right)$$

E12-06-121A: Measurement of ³He Elastic Electromagnetic Form Factors

- Significant discrepancies between theoretical and experimental ³He FFs (particularly G_M).
- All higher Q² data are from unpolarized electron scattering results.

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{1}{1+\tau} \left[G_{E}^{2}(Q^{2}) + \frac{\tau}{\epsilon}G_{M}^{2}(Q^{2})\right]$$

with
$$\epsilon = (1+2(1+\tau)\tan^2(\frac{\theta}{2}))^{-1}$$
 and $\tau = \frac{Q^2}{4M^2}$

• Double polarization asymmetry:

$$\mathbf{A}_{\mathrm{phys}} = \frac{-2\sqrt{\tau(1+\tau)}\tan\left(\frac{\theta}{2}\right)}{\mathbf{G}_{\mathrm{E}}^{2} + \frac{\tau}{\epsilon}\mathbf{G}_{\mathrm{M}}^{2}} \left[\sin\left(\theta'\right)\cos\left(\varphi'\right)\mathbf{G}_{\mathrm{E}}\mathbf{G}_{\mathrm{M}} + \sqrt{\tau\left[1 + (1+\tau)\tan^{2}\left(\frac{\theta}{2}\right)\right]}\cos\left(\theta'\right)\mathbf{G}_{\mathrm{M}}^{2}\right]$$

New independent tool to map FFs without the issues of unpolarized Rosenbluth measurements!

E12-06-121A: Proposed Procedure

Take data during d₂ⁿ 1-pass (~24 PAC hours)

- Polarized ³He target (polarization > 50 %)
- HMS:
 - Positioned at single angle centered on the anticipated FF diffractive minima for the entirety of the run.
- SHMS:
 - → Start at small angles and step up in Q^2 passing through the G_E minimum and approaching just below G_M 's.
 - Constrains the minima locations while mapping the asymmetry.

³He Charge Form Factor

³He Magnetic Form Factor

