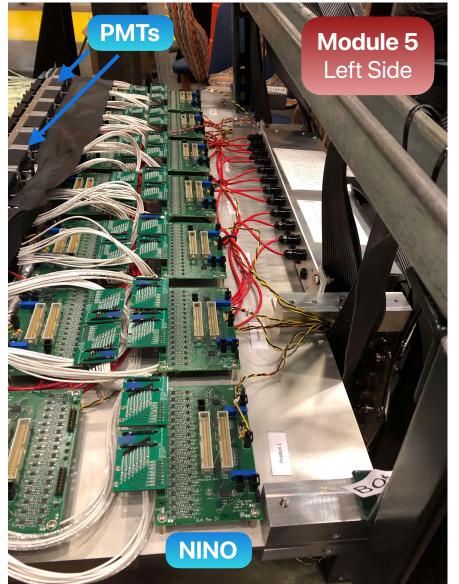
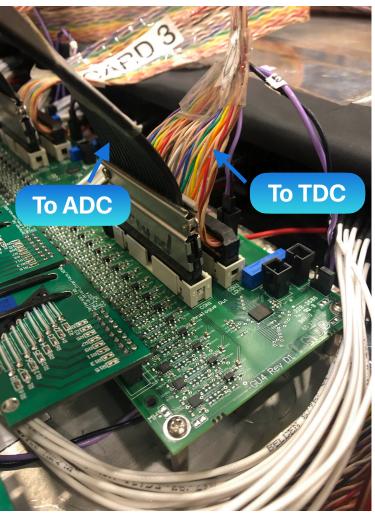
CDET DAQ Upgrade

SBS Collaboration Meeting July 15, 2020

David Flay, Alexandre Camsonne

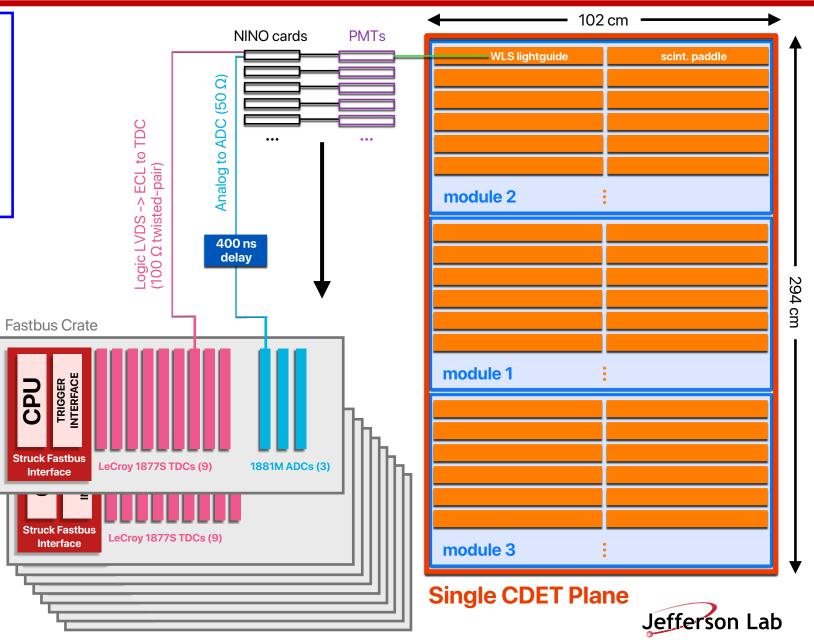




Setup in Test Lab

- Cosmic test stand: Assembled modules taking data
 - Complete: 1, 2, 3, 5 (right side)
 - Remaining to test: 4 and 6
- Stand-alone DAQ
 - Hardware:
 - FE NINO (Glasgow U)
 - Fastbus: ADCs, TDCs
 - HV PS (on loan from FNAL)
 - Software: CODA 2.6

Pictures: Taylor Edwards

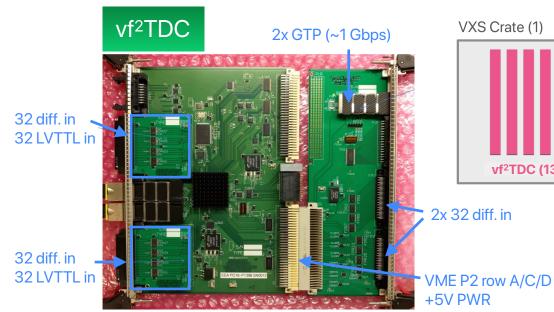

Current Setup

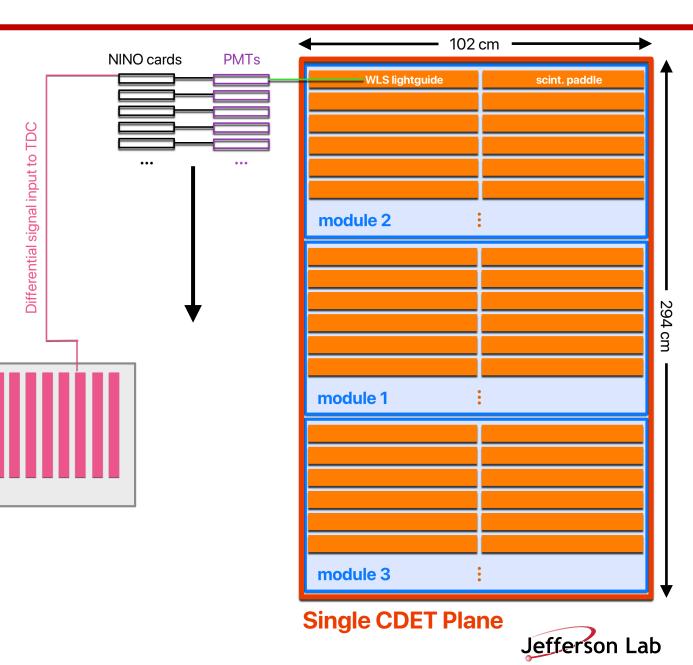
Limitations & Challenges

- TDC sustained data transfer rates ~20 MB/s
- ECAL trigger rate ~200 kHz => 44% dead time
- Present solution: Split TDCs across 9 Fastbus crates => need 84 TDC modules; necessitates an additional weldment for this DAQ

Hardware

- 392 scintillator paddles/module (2352 total)
- 28 16-channel PMTs/module (168 total)
- 28 16-channel NINO cards/module (168 total)
- 3 modules/plane (6 total)
- 2 planes
- 9 Fastbus crates
- 84 LeCroy 1877S TDCs
- 3 LeCroy 1881M ADCs (PMT HV tuning use only)


Approved Upgrade


- Move to VETROC system
- VXS FPGA-based flash TDC (vf²TDC)
- Single board: 128 (64) front (back) panel inputs (192 total)
- 13 vf²TDC boards in a single VXS crate

VXS Crate (1)

vf²TDC (13)

Reduction of space needed

Comparing Fastbus and VETROC

ltem	Fastbus	VETROC	
Data Transfer Rate	20 MB/s	200 MB/s	
Trigger Rate	10 kHz (L2A)	200 kHz (L1A)	
Timing Resolution	0.5 ns	≤1ns	
Dead Time	4%	1%	
Deployment	Triple number of cables	Standard cables	

Implementation in the Hall

- Have to work through and finalize the details
- Separate weldment for CDET
- VXS crate + patch panels + cables + ...
- Test everything before moving into hall
- Note: We can generate a trigger from VETROC for TDIS (RICH Cherenkov)

VETROC Timeline and Cost

- Will use the same setup as Compton Electron Detector => minimize development time
- Main tasks
 - Order vf²TDC boards (3 month acquisition time)
 - Set up VXS crate (1 month)
 - Merge with high-resolution firmware (1 month)
 - Update software to handle high resolution (1 month)

ltem	Quantity	Extended Cost (\$k)	
VXS Crate	1	15	 Funding from collaborators \$25k from INFN \$20k from UConn Split into two installments
vf ² TDC Boards	15 (13 + 2 spare)	28	
Signal Distribution	1	1	
TOTAL		44	

Summary and Plans

- CDET system set up in test lab, taking cosmics data
 - Existing system capable of handling high-rate data, at the cost of tripling number of components
- VETROC: reduced dead time, compact & modern setup

- Cost ~\$44k

- 3-month acquisition time, ~3-4 month development time
- What's Next?
 - Get vf²TDC boards ordered
 - Evaluating hardware and software needs for VETROC transition
 - Learning CODA
 - Getting familiar with Compton DAQ setup

Backup

Fastbus Dead Time

- Trigger rate
 - From GEp(5) proposal: ~100 kHz for threshold corresponding to e- with 85% of elastic energy
 - SBS DAQ Implementation Note: 200 kHz
- Assume 10% occupancy of CDET (rate per bar ~ 2 MHz, 50-ns window)
 - $0.1^{*}(\sim 2400 \text{ channels}) = 240 \text{ channels per event}$
 - Let's say 1 hit per channel
- LeCroy 1877S TDC encoding time:
 - From the manual: 1.7 us + $(N_{ch})(N_{hits}/ch)(0.05 \text{ us/hit})$
- We have 9 Fastbus units, 84 TDCs (total)
- Number of channels per TDC: 240/84 = 3 ch/TDC
- Encoding time per TDC = 1.7 us + (3 ch)(1 hit/ch)(0.05 us/hit) = 1.85 us
- Dead time = (200 kHz)(1.85 us)(1/9) = (0.37)/9 = 0.04 => 4%

VETROC Dead Time

- VETROC notes: vf²TDC dead time ~ 3 ns/hit
- Assuming 240 hits/event (see previous slide)
- 13 modules in VXS crate => 240/13 = 18 hits/module
- Module dead time = (3 ns/hit)(18 hits) = 54 ns
- Dead time = (200 kHz)(54 ns) = 0.01 = 1% (assuming parallel readout)
- Firmware Notes
 - Standard firmware (w/ trigger generation): 1 ns resolution
 - Separate firmware (w/o trigger): < 1 ns; Could use for GEp

