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HCal Overview

e Segmented calorimeter
designed to detect multiple
GeV protons and neutrons.

— 288 PMT modules (12x24).

— Four craneable
subassemblies.

— Weighs =40 tons.

— Wavelength shifter.

— Custom light guides.

— LED fiber optics system.

e SBS dipole magnet separates
scattered hadrons by charge on
HCal’s surface.
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e Designed for good time
resolution (goal 0.5 ns).

e Energy resolution ~30%.
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HCal Interior (288 Individual PMT Modules)

e 40 layers of iron absorbers
alternate with 40 layers of

scintillator.
Wavelength Shifter
e Iron layers cause the hadrons B, |

to shower.
om0 Rectangular to cylindrical
e Scintillator layers sample the Scintilators  Light Guide

energy. Absorbers

e Photons pass through a
wavelength shifter increasing
detection efficiency.

e Custom light guides transport
photons to PMTs.

— 192 12 stage 2" Photonis
XP2262 PMTs.

— 96 8 stage 2" Photonis
XP2282 PMTs.




Gy Experimental Setup
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Neutron/proton Arm: SBS dipole,
HCAL, and coordinate detector (not

shown) for charged-particle veto

10-cm liquid
deuterium/hydrogen
target (luminosity ~ 2
X lﬂjﬂ)
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Electron arm: BigBite
Spectrometer




HCal Hall Layout




HCal Front End
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HCal Front End Cont.







HCal DAQ Side
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HCal DAQ Side Cont.

Wil

|\

o




Data Acquisition System

e One VME (temp.) and one a0

2000
VXS crate. 1800

1600

e 18 16-channel fADC250 flash
ADCs measure energy. w0

— Takes numerous samples w00
(250 MHZ, 4n5). 20—
— Time over threshold

measurements extract timing
(CFD removes time walk).

— PMT traces fit by Landau. %Mw
timing. MW
e Triggers: Wmﬂ

— Scintillator paddle (cosmlcs) ’EM

— Summing module trigger.

— LED pulser trigger.
— BigBite trigger. 10



C Timing Resolution

e Require cosmic to be nearly ‘vertical’.

— Vertical F1 signals. \
— No surrounding F1 signals.
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fADC Timing Resolution

e Calculated in same manner as TDC timing except ref. channel is a

copy of cosmic paddle trigger.
— Fit the leading edge of trigger =~ — Standard deviation of ref.
copies with an exponential. channel time not quite

— Two channels to check relative Gaussian.

timing of trigger (good).
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fADC Timing Resolution

e Timing gets worse towards the bottom of the detector.
— This is due to the ref. time being the cosmic paddle on top of the
detector unlike with the TDC.
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fADC Timing Resolution

e Timing gets worse towards the bottom of the detector.
— This is due to the ref. time being the cosmic paddle on top of the
detector unlike with the TDC.
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Current Status

e DAQ operational and detector fully cabled.

e Cosmics/calibrations will resume when test lab access is restored.

e To do: https://docs.google.com/document/d/
15--0K01QLOgP-EP-2nf8LSBLx6Y6d6TAFrWK1UkRXBE/

— Grease remaining PMTs. — Online replay.

— Calibrate relative PMT QEs. — Analysis scripts.

— Calibrate PMTs with LED — Assemble remaining pulser boxes.
pulser/cosmics. — Fabricate shims.

— Voltage scans. — Move to Hall A.

— Simulation cosmics vs. real. — Install dry air supply.

— Upgrade to CODA 3.

e Personnel:
— 2 postdocs: Scott Barcus and Juan Carlos Cornejo.
2 students: Vanessa Brio and Dimitrii Nikolaev.

— Brian Quinn and Bogdan Wojtsekhowski.

New collaborators: Jim Napolitano, Donald Jones, and Kent
Paschke.
Prospective collaborators please contact skbarcus@jlab.org.
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https://docs.google.com/document/d/1S--OKOlQLOgP-EP-2nf8LSBLx6Y6d6TAFrWK1UkRxBE/
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Machine Learning Detector Trigger for HCal LDRD Proposal

e Motivation:
— High background rates obscure physics signals.
e Traditional Solutions:
— Energy threshold cuts.
— Prescaling the data.
— Decreasing the beam current.
e Machine Learning Solution:
— Train a neural network to classify detector events (e.g. p, n, 7).
— Use data from G4SBS converted to detector output to train NN.
— Load trained NN onto VTP FPGA (fast) to use as HCal trigger.
o Goal:
— Demonstrate that NNs can be loaded onto VTPs for triggering JLab
detectors.
— Allow HCal to run at higher current with a cleaner trigger.
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Brief Neural Network Overview

Input Layer Hidden Layer Output Layer

Oy = (S gt ) op= 9T waay + b)

Image from https://www.astroml.org/book_figures /chapterd/fig-neural_network.html

e Feed Forward: e Backpropagation:

— Initialize random weights and — Evaluate loss function. How
biases. wrong is the NN's guess?

— Enter labeled training data — Apply backpropagation
to input layer. algorithm to step back

— Calculate activation of each through NN (Chain rule).
neuron (did it fire?). — Adjust weights and biases

— Feed forward activation until along the gradient of descent
output layer reached. (minimize loss function).

— Repeat. 17



Convolutional Neural Networks

Fully
Connected

Convolution

Pooling .-~

Feature Extraction Classification

Image from https://www.mdpi.com /2076-3417/9/21/4500.

e Started with image classification.
e Detector traces are essentially images.
— For every event each PMT has numerous fADC samples (like pixels)
and a TDC value.
— The location of the PMTs relative to one another is important!
e Dense NNs assume each neuron connection is equally important.
e CNNs scan across the image with a kernel creating filters which
identify localized features.
e Pooling layers decrease the dimensionality to keep things
manageable. 18



Overview of Research Plan

N o ok~ w N =

Produce labeled training data from G4SBS.

Convert G4SBS data into detector signals.

Design model architecture (probably CNN).

Train CNN on simulated detector data.

Optimize model hyperparameters (layers, neurons, learning rate ...).
Using hlsdml translate the CNN into FPGA compatible code.

Load CNN onto VTP FPGA where it will use fADC250 and
VETROC (3 requested from LDRD) data to form HCal trigger.

Test the trigger under beam conditions and compare its performance
with traditional methods.
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Toy Example HCal Neural Network

e Create NN to identify events with probable cosmic signals. (Note:
traditional methods work better than this illustative example.)

° ROOQOT, Python, Numpy, Scikit-learn, Tensorflow, Keras,
Google Colaboratory (GPUs).

1. Format HCal data for NN compatibility.
2. Split data into train, test, and validate.

306807

adc_arr shape (306807, 144)

tdc_arr shape (306807, 144)

hit_arr shape (306807 )

[[ 4923. 3871. 4275. . 3891. . 39055.
[ 4753. 3841. 4261. ... 3891. . 38233.
[16731. 3843. 5307. ... 3880. . 38497,

4752. 3845. 4275. ... 3877. . 39097.]
4767. 3855. 4269. ... 386l1. . 39514.]
4758. 3856. 4267. ... 3886. . 37830.]

.08266092 0.06680004 0.0741044 ... 0.06766961 0.08695658 0.08695658]

[
[
[
[0.08651978 0.06803129 0.07513143 ... 0.06838278 0.08787302 0.08787302]
[
[0.28321155 0.06505182 0.08983346 ... 0.06567813 0.08463677 0.08463677]

.:07222936 0.05844316 0.06497907 ... 0.05892955 0.07599891 0.07599891
.08326621 0.06733611 0.07456754 ... 0.06744092 0.08733608 0.08733608]
.08391552 0.0680072 .07525589 ... 0.0685363 .08818361 0.08818361]]
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Toy Example HCal Neural Network Continued

EEEEIEE
=

!

|

I

el
I

=

=

=

il e e e | o
== E=l= |

EEEEIEE
=)




Toy Example HCal Neural Network Continued

3. Build model architecture.
4. Train neural network.

sequential

(None,
(None,
(None,
params
Trainable params
[Non-trainable param:

Epoch 1/25
Sms/step - loss: 0.3477 - accuracy: 0.4634 i 6.2844 - val

6ms/step - loss: 0.2666 - accuracy val_loss: 6. - val_accuracy
5ms/step - loss: 0.2506 - accuracy: 0 val_loss val_accuracy
6ms/step 2 accuracy: 0 val_loss: 6. val_accuracy

6ms/step accuracy val_loss val_accuracy

6ms/step E 0 val_loss val_accuracy

Sms/step - loss: R val
Sms/step - loss 0.9 val_loss

5ms/step - los: 2. val_loss: 6. val_accuracy
[Epoch 10/250

Epoch 245/250
301/301 4ms/step
4
Sms/step uracy: val_loss: val_accuracy:
391/391 Sms/step accuracy: val_loss: val_accuracy:
Epoch 248/250
391/391 s 5ms/step - loss accuracy: val_loss: val_accuracy:
ans/step accuracy: val_loss: val_accuracy:
Epoch 250/250
391/301 s 5ms/step - loss accuracy: val_loss: val_accuracy:
2ms/step - loss accuracy
9779199957847595]
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Toy Example HCal Neural Network Continued

5. Evaluate the model’s performance:

e |s loss function decreasing?
e |s accuracy increasing?
e Check for overfitting.

6. Optimize hyperparameters.

Loss

— 98%-+ accuracy with some optimizing.

Model losses

Model accuracy

— training
validation

training
validation

50

100 150 200
Epoch

e Simple CNN reached 99+% accuracy in only 20 epochs.

250
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Other Machine Learning Applications

Triggers for other detectors.

Data analysis:
— Event classification.
— Track reconstruction.
— Cluster finding.
— Regression.

e Simulation:

— Autoencoder/Generative Adversarial Network to more quickly
produce G4SBS and other simulation data.

e Unsupervised learning for event classification.

Explore successful pretrained model architectures.

Much more!
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Questions?
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