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HCal Overview

• Segmented calorimeter

designed to detect multiple

GeV protons and neutrons.

– 288 PMT modules (12×24).

– Four craneable

subassemblies.

– Weighs ≈40 tons.

– Wavelength shifter.

– Custom light guides.

– LED fiber optics system.

• SBS dipole magnet separates

scattered hadrons by charge on

HCal’s surface.

• Designed for good time

resolution (goal 0.5 ns).

• Energy resolution ≈30%. 1



HCal Interior (288 Individual PMT Modules)

• 40 layers of iron absorbers

alternate with 40 layers of

scintillator.

• Iron layers cause the hadrons

to shower.

• Scintillator layers sample the

energy.

• Photons pass through a

wavelength shifter increasing

detection efficiency.

• Custom light guides transport

photons to PMTs.

– 192 12 stage 2” Photonis

XP2262 PMTs.

– 96 8 stage 2” Photonis

XP2282 PMTs. 2



G n
M Experimental Setup

3



HCal Hall Layout
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HCal Front End
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HCal Front End Cont.
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HCal Front End Cont.
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HCal DAQ Side
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HCal DAQ Side Cont.
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Data Acquisition System

• One VME (temp.) and one

VXS crate.

• 18 16-channel fADC250 flash

ADCs measure energy.

– Takes numerous samples

(250 MHz, 4ns).

– Time over threshold

measurements extract timing

(CFD removes time walk).

– PMT traces fit by Landau.

• 5 64-channel F1TDCs measure

timing.

• Triggers:

– Scintillator paddle (cosmics).

– Summing module trigger.

– LED pulser trigger.

– BigBite trigger. 10



TDC Timing Resolution

• Require cosmic to be nearly ‘vertical’.

– Vertical F1 signals.

– No surrounding F1 signals.

• TDC time:

Tcor = TPMT − Tref,

Tref =
TDC 1 + TDC 2

2
.

• Extract standard deviation of single

PMT.

σPMT =
√
|σ2

cor − σ2
ref |.
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fADC Timing Resolution

• Calculated in same manner as TDC timing except ref. channel is a

copy of cosmic paddle trigger.

– Fit the leading edge of trigger

copies with an exponential.

– Two channels to check relative

timing of trigger (good).

– Standard deviation of ref.

channel time not quite

Gaussian.

σPMT =
√
|σ2

cor − σ2
ref |
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fADC Timing Resolution

• Timing gets worse towards the bottom of the detector.

– This is due to the ref. time being the cosmic paddle on top of the

detector unlike with the TDC.
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Current Status

• DAQ operational and detector fully cabled.

• Cosmics/calibrations will resume when test lab access is restored.

• To do: https://docs.google.com/document/d/

1S--OKOlQLOgP-EP-2nf8LSBLx6Y6d6TAFrWK1UkRxBE/

– Grease remaining PMTs.

– Calibrate relative PMT QEs.

– Calibrate PMTs with LED

pulser/cosmics.

– Voltage scans.

– Simulation cosmics vs. real.

– Upgrade to CODA 3.

– Online replay.

– Analysis scripts.

– Assemble remaining pulser boxes.

– Fabricate shims.

– Move to Hall A.

– Install dry air supply.

• Personnel:

– 2 postdocs: Scott Barcus and Juan Carlos Cornejo.

– 2 students: Vanessa Brio and Dimitrii Nikolaev.

– Brian Quinn and Bogdan Wojtsekhowski.

– New collaborators: Jim Napolitano, Donald Jones, and Kent

Paschke.

– Prospective collaborators please contact skbarcus@jlab.org.
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Machine Learning Detector Trigger for HCal LDRD Proposal

• Motivation:

– High background rates obscure physics signals.

• Traditional Solutions:

– Energy threshold cuts.

– Prescaling the data.

– Decreasing the beam current.

• Machine Learning Solution:

– Train a neural network to classify detector events (e.g. p, n, π).

– Use data from G4SBS converted to detector output to train NN.

– Load trained NN onto VTP FPGA (fast) to use as HCal trigger.

• Goal:

– Demonstrate that NNs can be loaded onto VTPs for triggering JLab

detectors.

– Allow HCal to run at higher current with a cleaner trigger.
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Brief Neural Network Overview

Image from https://www.astroml.org/book figures/chapter9/fig neural network.html.

• Feed Forward:

– Initialize random weights and

biases.

– Enter labeled training data

to input layer.

– Calculate activation of each

neuron (did it fire?).

– Feed forward activation until

output layer reached.

• Backpropagation:

– Evaluate loss function. How

wrong is the NN’s guess?

– Apply backpropagation

algorithm to step back

through NN (Chain rule).

– Adjust weights and biases

along the gradient of descent

(minimize loss function).

– Repeat. 17



Convolutional Neural Networks

Image from https://www.mdpi.com/2076-3417/9/21/4500.

• Started with image classification.

• Detector traces are essentially images.

– For every event each PMT has numerous fADC samples (like pixels)

and a TDC value.

– The location of the PMTs relative to one another is important!

• Dense NNs assume each neuron connection is equally important.

• CNNs scan across the image with a kernel creating filters which

identify localized features.

• Pooling layers decrease the dimensionality to keep things

manageable. 18



Overview of Research Plan

1. Produce labeled training data from G4SBS.

2. Convert G4SBS data into detector signals.

3. Design model architecture (probably CNN).

4. Train CNN on simulated detector data.

5. Optimize model hyperparameters (layers, neurons, learning rate ...).

6. Using hls4ml translate the CNN into FPGA compatible code.

7. Load CNN onto VTP FPGA where it will use fADC250 and

VETROC (3 requested from LDRD) data to form HCal trigger.

8. Test the trigger under beam conditions and compare its performance

with traditional methods.
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Toy Example HCal Neural Network

• Create NN to identify events with probable cosmic signals. (Note:

traditional methods work better than this illustative example.)

• Tools: ROOT, Python, Numpy, Scikit-learn, Tensorflow, Keras,

Google Colaboratory (GPUs).

• Steps:

1. Format HCal data for NN compatibility.

2. Split data into train, test, and validate.
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Toy Example HCal Neural Network Continued
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Toy Example HCal Neural Network Continued

3. Build model architecture.

4. Train neural network.
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Toy Example HCal Neural Network Continued

5. Evaluate the model’s performance:

• Is loss function decreasing?

• Is accuracy increasing?

• Check for overfitting.

6. Optimize hyperparameters.

– 98%+ accuracy with some optimizing.

• Simple CNN reached 99+% accuracy in only 20 epochs.
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Other Machine Learning Applications

• Triggers for other detectors.

• Data analysis:

– Event classification.

– Track reconstruction.

– Cluster finding.

– Regression.

• Simulation:

– Autoencoder/Generative Adversarial Network to more quickly

produce G4SBS and other simulation data.

• Unsupervised learning for event classification.

• Explore successful pretrained model architectures.

• Much more!
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Questions?
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